

Energy efficient time table planning

Bart Van der Spiegel UIC Energy Efficiency and CO2 Network

20.02.2018

UIC ENERGY EFFICIENCY DAYS 2014

ANTWERPEN, 16 - 19 JUNE

ENERGY EFFICIENCY IN PLANNING

INFLUENCING ENERGY EFFICIENCY AT AN EARLY STAGE

MATTHIAS TUCHSCHMID, ENERGY MANAGEMENT SBB

Energy Efficiency, the best fuel to move our trains!

BIGGEST INFLUENCE ON ENERGY EFFICIENCY IS AT EARLY STAGE OF STRATEGY AND PLANNING.

INFR/ABEL

yic/

INFLUENCING FACTORS ON ENERGY CONSUMPTION

INFR/ABEL

uic

REDUCTION OF GROSS-TKM

e.g. Optimised train sizes.

Adjusting train size to demand, by using smaller trains for regional traffic on long distance traffic routes at off-peak hours.

Optimising routes in network.

e.g. avoiding parallel routes with low load factor in off-peak times (e.g. parallel IC and Regio)

UIC/

INFR/ABEL

LOWERING SPEED

Reducing speed reductions at infrastructure

longer running times (1 minute) to reduce peek speed peaks

stops on request

INFR/ABEL

Shorter stopping times in train station in off-peak hours.

uíc/

Weichen, Pleittatel, usw. Ium-Lage		km	Neigung in ‰ + -		Zugreihen		Α			D
					Bremsverhältnis in %		50	40	30	30 V _{max}
		0			A-Stadt	30	30	30	30	30
km 0.68	Weiche				km 0.70		50	40		50
					km 1.20			50	50	
			10	17	km 1.70			50	-20	
km 1.75	Weiche						40	40	40	40
km 2.65	Weiche				km 2.70		50	50	50	50
		3.96			11 B-Dorf	30	1025	922	2226	
	2		13	5						
		6.08			†↓ C-Dorf	30				
			13	10	D-Dorf					
	_	9.62			⊥ E-Dorf	30		,		

HARMONIZE V-PROFILE

e.g. Priorities in planning.

INFR/ABEL

Currently, the priorities of planning are as follows: First comes the main lines, then commuter traffic and third freight trafic. This leads to several planned and unplanned stopps of heavy freight traffic (>1000t!) with energy losses, because a light commutter train has a higher priority.

These stops of heavy freight trains can be reduced, if the traffic is priorized according to the average speed.

Drivers for energy efficiency (Wim Bontinck)

Avoid unplanned stops

Passenger train between Paris and Cherbourg (from presentation Dominique Vastel)

Each extra stop increases consumption with 4%. (study by Zaki Hadj Mehend)

Avoid conflicts already in planning

Detection of conflicts in planning phase (with LUKS).

And possibly even feedback to drivers via C-DAS or ATO (stakeholder workshop in autumn 2018)

If conflict remains in planning, then Traffic Management will have to handle this conflict every day again.

Add spare time to permit eco-driving

- Automatic Train Operation is already 25 years operational in Czech Republic
- 8% spare time to time table results in 35% reduction of energy consumption

- One of first experiences of e-drivers of Lineas.
- Start coasting 8 km in front of speed restriction.

It's Eress Forum time

and we're off to Rome on June 13

To see all details and get registered

www.eress.eu

All you need to know on on-board energy metering, settlement and billing

Program: EU framework, standardisation update, Eress Award, train-data handling, case studies, big data coming from meters