INTERNATIONAL UNION OF RAILWAYS

ų ic

THE END of FOSSIL FUELS

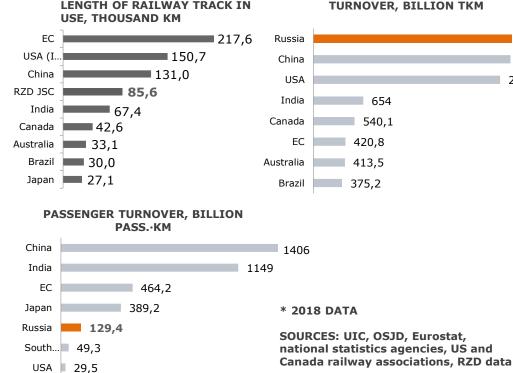
IN THE RAILWAY SECTOR

ABOUT EXPERIENCE HISTORY BIOFUELS IN Russian Railways AND THE TIME OF THE DIESEL LOCOMOTIVES

13 November 2019 ZURICH, SWITZRLAND

Boris IVANOV Russian Railways

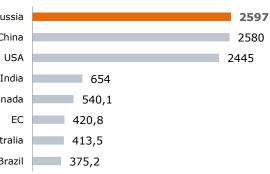
HYBRI

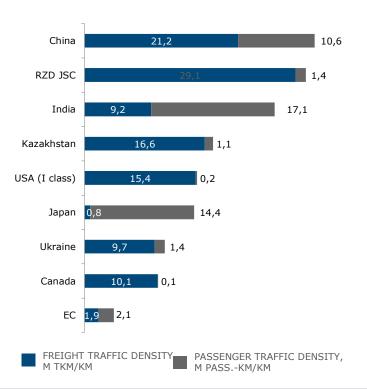

0.0

000

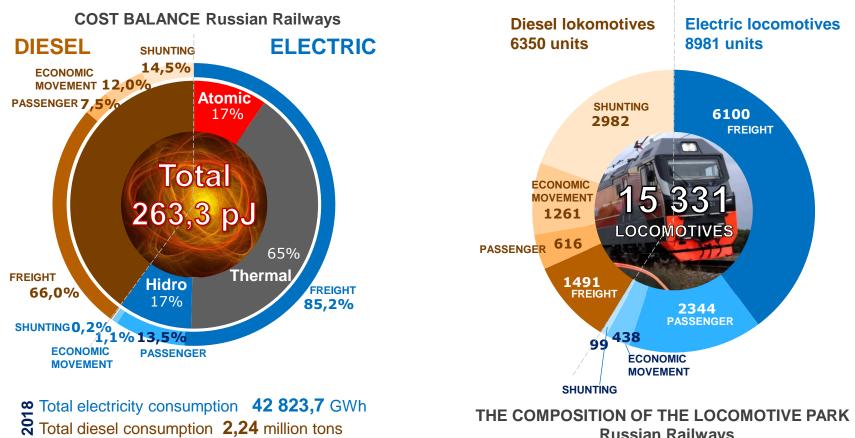
0.0

D

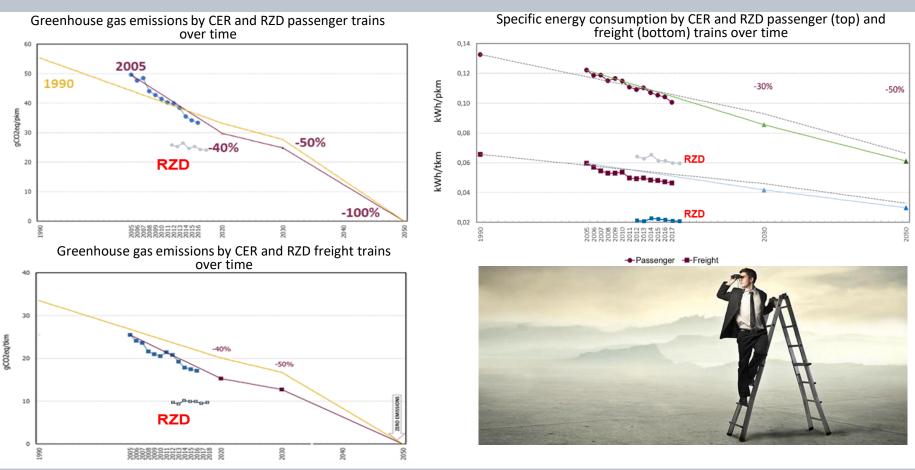

RUSSIAN RAILWAYS: A GLOBAL LEADING RAILWAY SYSTEM*


Kazakhstan

18,2


TURNOVER, BILLION TKM

OPERATION INTENSITY OF RAILWAY NETWORKS, M TKM EQ./KM



COST BALANCE AND LOKOMOTIV PARK Russian Railways

THE COMPOSITION OF THE LOCOMOTIVE PARK **Russian Railways**

RZD OPERATING RESULTS

BIODIESEL TEST CONDITIONS

Locomotive specifications •Axle wheel configuration: 3₀–3₀ •Diesel power: 993 kW •TEM power: 6×134 kW •Maximum Speed : 95 km/h

•Design weight with 2/3 fuel, water and sand reserves: 123 t

The test was performed on four ChME3 diesel locomotives
Locomotive No. 1 operated on pure diesel fuel (annual consumption: 128 t)
Locomotive No. 2 operated on diesel fuel with 5% added biodiesel (annual consumption: 69 t)
Locomotive No. 3 operated on diesel fuel with 10% added

Locomotive No. 3 operated on diesel fuel with 10% added biodiesel (annual consumption: 38 t)

Locomotive No. 4 operated on diesel fuel with 20% added biodiesel (annual consumption: 69 t)

- The locomotives were equipped with diagnostic instruments
- $\circ\,$ The share of idling was comparable for all the locomotives
- Diesel locomotives working on mixed fuels exhibited increased specific fuel consumption

KEY PHYSICO-CHEMICAL PARAMETERS OF DIESEL AND BIODIESEL FUEL

Parameter	Unit	Diesel fuel EN 590:2004	Biodiesel EN 14214:2003
Net calorific value	MJ/kg	42.5	37.5
Density at 15 °C	kg/m³	820-845	860-900
Lubricity	μm	460	344
Pour point	°C	-5 ÷ -45	-15
Cloud point	°C	-	-4
Flash point, not less than	°C	55	101
Cetane number	-	51	51
Ash, not more than	weight %	0,01	0,02
Copper plate corrosion	-	Class 1	Class 1
Water content, not more than	mg/kg	200	500

D/J

ALTERNATIVE FUEL TEST RESULTS

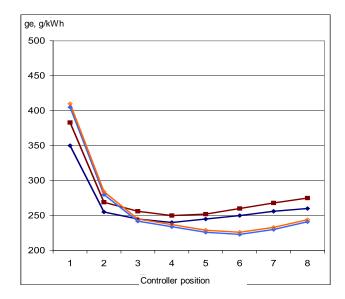


Fig. 3.11. Specific fuel consumption in brake resistor load tests of ChME3 diesel locomotive No. 5193 (20% rapeseed methyl ester) before (2006) and after (2007) driving tests.

2007, diesel fuel 2006, biodiesel 2007, biodiesel

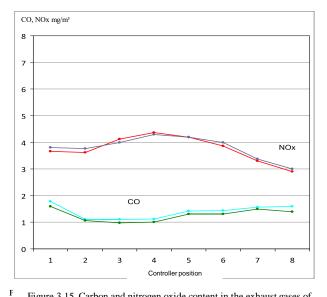


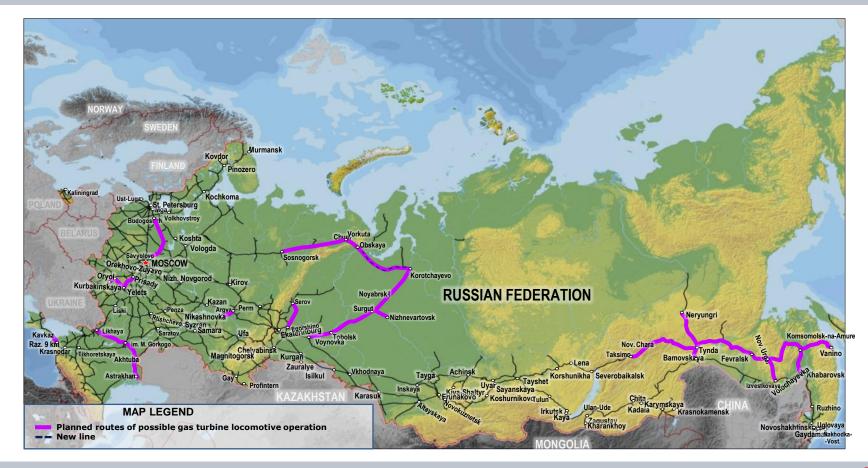
Figure 3.15. Carbon and nitrogen oxide content in the exhaust gases of ChME3 diesel locomotive No. 5193 (20% rapeseed methyl ester) before (2006) and after (2007) driving tests.

2006, NOx
2007, NOx
2006, CO
2007, CO

TEST RESULTS

- o Diesel locomotive maintenance revealed increased fouling of fine fuel filtres
- As the proportion of biofuel in the fuel mixture rises, so does the intensity of carbon buildup on the sides of the combustion chambers, piston surface and valves of engine cylinders.
- Brake resistor load tests of diesel locomotives demonstrated that addition of biofuel to diesel fuel has almost no effect on locomotive power
- Specific effective fuel consumption falls by 1.8–3.6% relative to pure diesel fuel, owing to the low calorific capacity of biofuel
- When fuel with 20% added biofuel is used, the level of carbon oxide is reduced by 30% relative to conventional fuel, whereas the nitrogen oxide content remains almost constant
- As the cost of biofuel is higher than that of pure diesel fuel, it was considered economically unviable

TEST RESULTS



The tests established that biodiesel fuel can be used with RZD diesel locomotives as long as several conditions are met:

- As biodiesel has stronger detergent qualities, fuel tanks and the fuel system must be thoroughly washed before biodiesel is used. Otherwise pumps and nozzles will be fouled and may be damaged
- Use of biofuel leads to higher deposition of unburned particles in the engine relative to pure diesel fuel
- Owing to the higher acidity of biofuel, the wear and replacement rate of rubber seals of the diesel is accelerated, requiring specialised additives to reduce the adverse impact of biofuel on rubber seals
- As biofuel is hygroscopic, it freezes at temperatures as high as −15 °C, requiring use of additional additives.

FUTURE REGION OF OPERATION OF LIQUID NATURAL GAS-FUELLED LOCOMOTIVES

LINE OF MAINLINE GAS-FUELLED LOCOMOTIVES FOR THE NLR

Engine power	8500 kW
LNG reserve	40 t
Wheel configuration	4o-4o×2-2x4o-4o

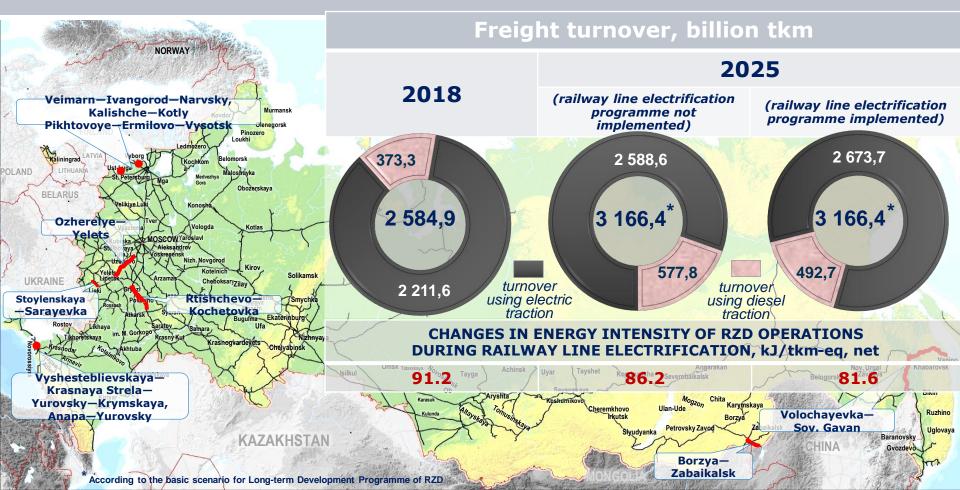
Gas-piston main-line locomotive (draft design)

Engine power	
LNG reserve	
Wheel configuration	40-

2×3500 kW 20 t 40-40×2-2x40-40

Reduced life cycle cost of up to 8.5 %

ADVANCED DESIGNS OF GAS-FUELLED SHUNT LOCOMOTIVES


TЭМ19-002

	5 0
Wheel configuration	30-30

ENERGY EFFICIENCY OF RAILWAY LINE ELECTRIFICATION FOR THE PERIOD UP TO 2025

THANK YOU!