

Traction Brake Energy Regeneration By Supercapacitor Energy Storage System

Akos Labady - akoslabady@eaton.com

Sr. Field Application Engineer – Eaton ELX EMEA

UIC Rotterdam - 11 Feb 2019

© 2019 Eaton. All Rights Reserved

Panama Canal

Energizing the Panama Canal to take on double the traffic

Facebook

Energizing data center as forward-thinking as Facebook itself

<u>Valero</u>

Energizing a refinery to take arc flash danger out of the operation

Schaltanlagenbau Gormanns GmbH

Energizing a potato plant to make sorting 120 tons of potatoes a one-man job

Johann Cruijff ArenA

Energizing by stored energy saving 117.000 tons of CO2

TriRiver Health Partners Energizing IT systems to power the transformation of healthcare

Beijing subway

Energizing a subway system to move even faster than the speed of a growing Beijing

PGE Salem Smart Power Center Energizing a working smart grid for energy intelligence.

What matters to our customers, matters to us

30-40% - the traction energy potentially to be saved by regenerative braking

- AUX supplies during braking
- Powering other trains on the same section
- Energy return to the AC grid by reversible substations
- Inject in Energy Storage Systems (ESS)

Effectiveness & Complexity

15-25% - the traction energy cost efficiently could be saved

ESS CHALLENGE

- High power (MWs) to absorb in short time (30-60s)
- Braking power and energy differs from train to train – depending on the train's powertrain and weight
- Unpredictable charge and discharge sequence – multiple trains in the same section interfere with each other

There is an OPTIMAL ESS DESIGN for all sections which maximize the return-on-investment

High Power Density Energy Storage Technologies

Key Characteristic Units		Supercapacitor	Li-ion Batteries	Flywheel		
Voltage per base unit	V	2.5-3	3.6-4.2	400-500		
Cold Operating Temp	°C	-40	-20	-10	Supercap	
Hot Temperature	erature °C		+45	+40	Electrostat	
Cycle Life		>1,000,000	10,000	unk		
Calendar Life	Years	5-20	3-10	20	1	
Energy Density	Wh/L	1 – 10	250-650	0.6 – 1.2 incl converter		
Power Density	W/L	1000 – 10,000	850 - 3000	98 - 275	Li-lon –	
Efficiency	су %		80 - 90	98	Electrochem	
Charge Rate	C/x	>1,500	<40	~4	. e-teilait	
Discharge Time		Sec or Minutes	Hours	Seconds		
Cost per kWh	\$	10.000-15.000	100-500	2.000-5.000		
Cost per kW	\$	0.1-0.2	100-500 (1C)	300-500 (many factors)	- AL	
					Flywheel mechanic	

Train Braking Energy Regeneration Example

- Inputs taken into consideration for the sizing:
- V catenary train brake = 800-900VDC
- I regenerative brake = 1000A / ~ 800kW considering efficiencies, but can be more available
- T regen = 30s considering only 20+Km/h
- V boost during train acceleration = 750VDC
- Frequency of regenerative cycle is 1 per 5 minutes =>
 - ~ 100.000 cycles per year

Which One Is The Ideal ESU Technology?

ESU Technology	Required Capacity	Total Volume	Total Weight	Expected ESU Cost *	Estimated Lifetime	Roundtrip Efficiency	Regenerated energy during lifetime
Supercap (Eaton XLM)	35F @ 1500V => 6.7kWh	~3m3	~3 Tons	\$200k	12yrs, 1M+ cycles – continues to operate with lower capacity year by year	96%	5.7 GWh
Li-Ion (LMO)	192kWh @ 800V (1C considered)	~2m3	~2.7 Tons	\$50k	3yrs, 300k cycles – EOL condition	90%	1.62 GWh

*: ESU cost only, no converter and switchgear considered

For the energy regeneration cost per return is similar for supercapacitor and Li-Ion technology

Advantageus Use Cases Supercap and Lilon Batteries

SUPERCAP

- More cost effective if the regeneration frequency is higher than 1 in 5 minutes due to the infinite cycle life
- Better for **outside installations** as highly efficient in cold and hot temperatures as well (-40/+65C)
- Better in case stored energy is used for substation power boost due to better overall efficiency
- Better where maintanance and replaceability is difficult due to maintanance free and long life being

Li-lon BATTERY

More cost effective if the regeneration frequency is lower than 1 in 5 minutes

Better in case the stored energy is to be used to **power the train station** energy needs during peak consumption by the accumulated energy

Better if the stored energy is planned to be used to power the catenary for longer periods (up to 30min) in case of failure in external power supply and move trains around in this down period

Supercapacitor – Battery Hybrids

- In rapidly fluctuating regeneration cycles a supercap-battery hybrid solution is beneficial
- Supercaps are handling the high rise current portions both for charge and discharge
- Benefits of a hybrid solution:
 - Longer battery life ~2x
 - Less thermal stress on the battery
 - Efficiency improvement ~5%

Eaton Developed A Simulation Program To Evaluate Battery-Supercap Hybrids For Different Drive and Recovery Cycles/Profiles

The Ultimate Solution

11

12