



# New Medium Voltage DC railway electrification system

P. Ladoux : University of Toulouse; H. Caron and C. Courtois : SNCF Réseau and A. Verdicchio PhD student : University of Toulouse / SNCF Réseau

Reference : "New Medium Voltage DC railway electrification system", A. VERDICCHIO, P. LADOUX, H. CARON, C. COURTOIS IEEE transaction on transportation electrification Vol: 4, Issue 2, June 2018, (p. 591-604)









#### **MVAC** electrification systems

|                                    | $\overline{\mathfrak{S}}$                                                                                                                                              | $\odot$                                                                                                       |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| <b>15 kV 16,7 Hz</b><br>(1905 -> ) | <ul> <li>Specific generation and distribution grid</li> <li>Bulky substation transformers</li> <li>Locomotive on-board AC/DC conversion<br/>and 2.f filters</li> </ul> | - No phase break<br>- AC circuit breakers                                                                     |
| <b>25 kV 50 Hz</b><br>(1950 - >)   | <ul> <li>Single Phase Substations</li> <li>Neutral Sections</li> <li>Locomotive on-board AC/DC conversion<br/>and 2.f filters</li> </ul>                               | <ul> <li>Supply from public grid</li> <li>Overhead line cross-section</li> <li>AC circuit breakers</li> </ul> |

#### **DC** electrification systems

|                                     | $\overline{\mathfrak{S}}$                                                                                            | $\odot$                                                                                                                                                                                                        |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1.5 kV or 3 kV</b><br>(1915 -> ) | <ul> <li>AC/DC conversion in substation</li> <li>Overhead line cross-section</li> <li>DC circuit breakers</li> </ul> | <ul> <li>Substations in parallel</li> <li>Three-phase power Supply from public grid</li> <li>Simple locomotive on-board Power</li> <li>converter (Input Filter + Voltage Source</li> <li>Inverter).</li> </ul> |









#### To mix advantages of the existing electrification systems

- Power sharing between Substations
- Three-phase power Supply from public grid
- Simple locomotive on-board Power converter (Input Filter + Voltage Source Inverter)
- Light overhead line and no inductive voltage drop

# Power electronics is mature enough

- HVDC power converters (up to +/- 800 kV , 3 GW) are operated everywhere in the world.
- Solid State DC Circuit Breakers for HVDC grids are tuned.
- MV drives for industrial motors (6 KV to 10 kV) are commercially available.
- SiC power semi-conductors enable the realization of compact MV traction converters.

# A real breakthrough for the future of rail transportation

- A solution for countries which do not yet have electrified railway lines
- A solution for DC lines renewal (copper savings, energy efficiency increase).
- Easier integration of renewable energy sources and storage elements (MVDC smart grid).









#### **Considered voltage ranges**

The same proportionality rule as the European Standard EN 50163 for 1.5 kV DC and 3 kV DC

| V <sub>n</sub> (kV) | V <sub>min</sub><br>(kV) | V <sub>max</sub><br>(kV) | E <sub>sub-station</sub><br>(kV) | E <sub>sub-station</sub> /V <sub>n</sub> |
|---------------------|--------------------------|--------------------------|----------------------------------|------------------------------------------|
| 1.5                 | 1.0                      | 1.8                      | 1.75                             | 0.85                                     |
| 3                   | 2.0                      | 3.6                      | 3.5                              | 0.85                                     |
| 4.5                 | 3.0                      | 5.4                      | 5.25                             | 0.85                                     |
| 6                   | 4.0                      | 7.2                      | 7.0                              | 0.85                                     |
| 7.5                 | 5.0                      | 9.0                      | 8.75                             | 0.85                                     |
| 9                   | 6.0                      | 10.8                     | 10.5                             | 0.85                                     |
| 10.5                | 7.0                      | 12.6                     | 12.25                            | 0.85                                     |









#### **Considered traction circuit**



Double track line with a paralleling station at sector mid-point









#### Determining substations distance and overhead-line cross-section

#### **Train Characteristics**

| Transport<br>service | TRAIN SPEED | Train Power |
|----------------------|-------------|-------------|
| Suburban             | 80 km/h     | 3 MW        |
| High-speed           | 280 km/h    | 12 MW       |

#### **Railroad traffic**



 $\Delta t$  is 5 minutes from left to right and 5 minutes and 30 seconds in the other direction.





O Bernard 1





# Determining substations distance and overhead-line cross-section





UIC Workshop "Energy efficient Infrastructures"







## Determining substations distance and overhead-line cross-section





UIC Workshop "Energy efficient Infrastructures"





#### Simulation results

9 kV DC high-speed line – Substation spacing 45 km; Overhead-line cross-section 340 mm<sup>2</sup>. Train power 12 MW; Train speed 280 km/h



#### Overhead-line temperatures calculated close to the substations







UIC Workshop "Energy efficient Infrastructures"

INP





Paris-Strasbourg high-speed line 2 x 25 kV AC and 9 kV DC



Overhead line equivalent cross-section (100% Cu) for one track : 377 mm<sup>2</sup>









Paris-Strasbourg high-speed line with 9 kV DC Electrification system

Simulation results : real railroad traffic between 15:00 and 19:30





Energy Efficiency of Traction Circuit (Computation from 16:00 to 18:00)

0,94 for 9 kV DC and 2 x 25 kV AC









Bordeaux-Hendaye intercity line 1.5 kV DC Electrification system (Lamothe – Saint Paul Sector)



Overhead line equivalent cross-section (100% Cu) for one track : 850 mm<sup>2</sup>







Bordeaux-Hendaye intercity line 1.5 kV DC Electrification system (Lamothe – Saint Paul Sector)

Simulation results considering real railroad traffic









Bordeaux-Hendaye intercity line 9 kV DC Electrification system (Lamothe – Saint Paul Sector)



Overhead line equivalent cross-section (100% Cu) for one track : 230 mm<sup>2</sup>







Bordeaux-Hendaye intercity line 9 kV DC Electrification system (Lamothe – Saint Paul Sector)









Bordeaux-Hendaye intercity line 1.5 kV DC versus 9 kV DC (Lamothe – Saint Paul Sector)



Railroad Traffic

Power absorbed by trains

#### Computation over the time period 14:00-22:00

|                                          | 1.5 kV<br>(with feed-wire) | 9 kV                | 9 kV<br>(with feed-wire) |
|------------------------------------------|----------------------------|---------------------|--------------------------|
| Overhead line equivalent cross-section   | 850 mm <sup>2</sup>        | 230 mm <sup>2</sup> | 410 mm <sup>2</sup>      |
| Energy efficiency of traction circuit    | 0,89                       | 0,95                | 0,97                     |
| Total Energy provided by the substations | 38 MWh                     | 35,5 MWh            | 34,9 MWh                 |



UIC Workshop "Energy efficient Infrastructures"







#### Switching from 1.5 kV to 9 kV DC

#### Initial Situation











# Switching from 1.5 kV to 9 kV DC

Evolution of infrastructure : intermediate stage



9 kV AC/DC converters to supply a 9 kV feed-wire DC/DC Power Electronics Transformers (PETs) replace intermediate substations Unchanged Traction Circuit









### Switching from 1.5 kV to 9 kV DC

Evolution of infrastructure : Final stage



Paralleling station with Hybrid Circuit Breakers are installed along the line









M

# Switching from 1.5 kV to 9 kV DC

Evolution of traction units

Intermediate Stage : On Board Power Electronics Transformer

Final Stage : MV traction inverter

NPC VSI based on 10 kV SiC MOSFETS

9 kV DC

4.5 kV

rails

Pantograph



3.3 kV SiC MOSFETS are available



