

UIC Energy Efficiency Workshop Rome 4th October 2017 Frédéric Belmonte

Ours Levers to reduce the Energy Consumption

Weight Reduction

Line receptivity in Braking

Intelligent Traction Control

High efficient HVAC "Climpac"

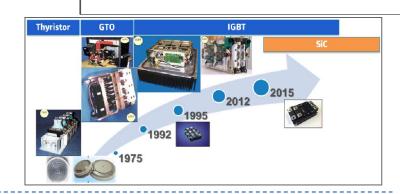
OBJECTIVE: -20% by 2020 vs 2014

Energy Storage

Efficient Traction and Auxiliary Converters

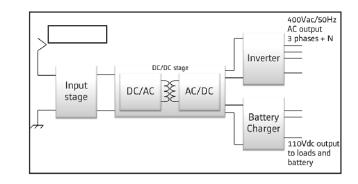
Train Motion Resistance

Efficient Traction Motors

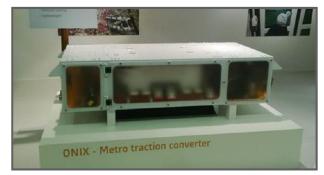


Efficient Traction and Auxiliary Converters

Traction SiC



- Energy saving : 10% @ train level (Regional train)
- Operator should implement in tenders energy criteria with a high weight and a dedicated cost model


Medium Frequency Architecture

- Automatic reversible mode to supply (HVAC & Traction) from auxiliary batteries (ie: can move train in depot without catenary)
- o IGBT or Full SiC technology, Naturally Cooled or by air forced
- Up to 30% less volume and weight. Efficiency (full power) : 96%

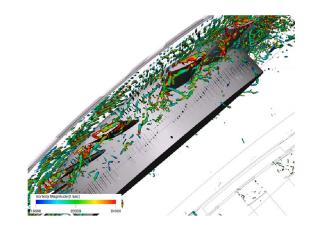
Optimized Traction Converter & Cooling Systems

- Optimized converter PWM & control strategy limiting inverter & traction motor losses and maximizing the regeneration in brake
- Move from forced air to natural cooling (fan removed)
- o Maintenance gain for the operator

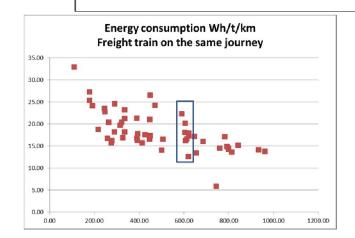
ALSTOM - 05/10/2017 - P 3

Efficient Traction Motors

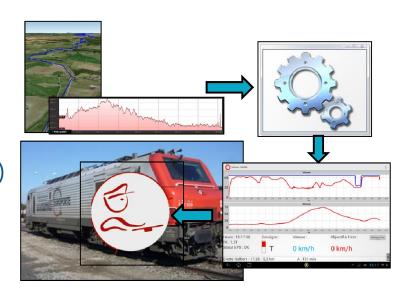
- Latest generation high energy efficient Permanent Magnet Motors
 - Lighter than an asynchronous motor for a given power
 - Energy consumption : up to -15%


High speed Motors

- Less weight & volume → less energy
- Prediction of cooling noise by CFD (Computational Fluid Dynamics)



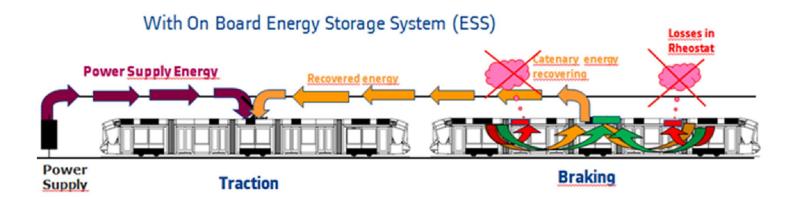
Intelligent Traction Control


Energy consumption between drivers

- Up to 30% more in freight trains
- Up to 10% in high speed trains
- Up to 5% in tramways

■ Algorithms to optimise the speed profile

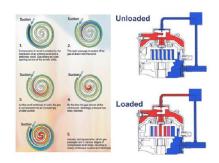
- Be able to calculate an optimised speed profile
- Give advices to the driver (embedded or standalone)
- Automatic eco cruise control



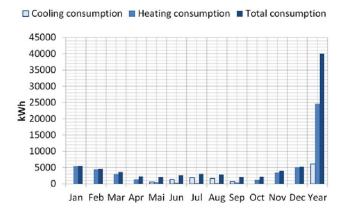
Energy Storage

On Board Energy Storage System

- Energy recovering in regenerative Braking
- Reusing in Traction phase

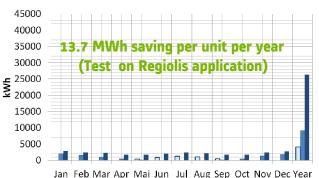


Reversible "Heat Pump" – CLIMPAC



New HVAC based on the "Heat Pump"

 To move thermal energy thought an optimized digital control of the compressor to replace the traditional systems using heaters by resistances.



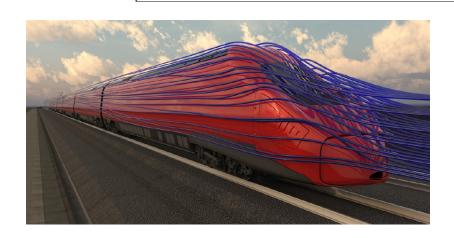
Weight Reduction

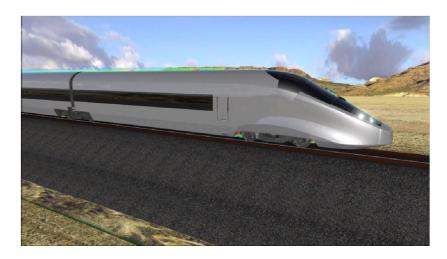
By the using of special materials

- Composite materials
- Ultra High Strength Steel

By design optimization of the magnetic parts (less iron and copper)

- Medium Frequency Auxiliary Converters
- High Speed Traction Motors





Train Motion Resistance

Accurate simulation tools

- Pioneers in the application of new technics
 CFD (Computational Fluid Dynamics) applied to the <u>complete train model</u>
- CX improvements applying modifications in several parts of the train: nose, bogies, gangway, pantograph..
- Energy saving : up to 3% (kWh/t) at train level
- With complete optimisation (Cx & air flow), up to 9% (kWh/t) for global aero resistance

Line receptivity in Braking

■ HESOP: reversible power-supply substation

- Designed to deliver better energy efficiency for urban and suburban public rail transport networks (600V/750V/1500V DC)
- 99% of recoverable energy during braking mode which can be re-injected into the electricity network

