

INTERFACES AND INTERACTION BETWEEN INFRASTRUCTURE SUBSYSTEM AND ROLLING STOCK

Rail System Department

Day 1. 17th September 2025

08:00-13:00 Technical visit

The visit will be to multiple-gauge S&C (Loja), a track-gauge changer as well as the track maintenance facilities (Antequera).

13:00-14:30 Lunch

Joint TTI & TEG coordination lunch, focused on collaboration and synergy opportunities.

14:30-15:00 Point 1. Welcome remarks and general information

1.1 UIC TTI chairman welcome and ADIF welcome

Anup Chalisey and ADIF will open the meeting.

1.2 Short round table

Short introduction from the attendants to the meeting.

1.3 General remarks and UIC news

Rosa Casquero and Jorge Suárez. General information on the meeting and UIC.

15:00-15:45 Point 2. Key invited session

TTI sector - looking forward. Anup Chalisey. RSSB

Flying ballast. Miguel Rodríguez. ADIF

Train-Track Interaction

16:00-18:00 Point 3. SubWGs parallel invited sessions

SWG Pantograph-Catenary

- Pantograph testing for simulation models. Manuel Tur. Polimi-UPV-Huddersfield
- Investigate pantograph-catenary interaction issues in neutral zones. Mehdi Dib. RAIL ELECT Spa - Groupe GCF(SNTF)
- Current Developments in Rigid Catenary

 —Pantograph Wear Reduction: Insights from the University of M\u00e1laga. Vid Bacic. Universidad de M\u00e1laga.

SWG Railway Dynamics and Gauges

Data-oriented

From Track to Tool: Turning Data into Compatibility Decisions. Amine Chakir SNCF

InterActive Pads for monitoring the interaction Wheel-Rail. Miguel del Sol. Universidad de Granada.

Extension of Rail Replacement Cycle Using Rail Health Index Reflecting Onboard Train Data (Axle Box Acceleration Measurement etc).

Mitsuru Hosoda. UIC-RTRI

Al-Enhanced Condition Monitoring of Railway Infrastructure Using Onboard and Wayside Systems. Diogo Ribeiro. ISEP

Track component-oriented

Reduction of rapid variations in track stiffness around e.g. bridges and tunnels. Björn Paulsson Chalmers University of Technology.

Fatigue resistance required for rail fastening systems considering the occurrence tendency of lateral forces at curved sections of narrow gauge track. Tadashi Deshimaru. RTRI.

A new calculation framework for railway track designers and maintainers to better understand and estimate service loads. Yann Bezin. University of Huddersfield.

The dynamic amplification of railway loads in the design of under-track structures. Andrea Latorre. RFI.

20:00 Social Dinner

Self-paid. Málaga beach.

The dinner will take place on 17 September at 20:00 at Chiringuito La Campana (Málaga).

Cocation: https://maps.app.goo.gl/aFD5Wc4MvgJ6YLu2A

Day 2. 18th September 2025

09:00-10:45 Point 4. Workshop on TTI strategy

Parallel working sessions on the different TTI SubWGs

Identifying key topics and building the Mission and Vision.

SWG Railway Dynamics and Gauges.

SWG Pantograph-Catenary.

General session to exchange each SubWG's conclusions.

10:45-11:00 Coffee break

11:00-11:30 Point 5. Opt-In 2026

Reminder and preparation of proposed opt-in projects for 2026.

11:30-12:00 Point 6. Ongoing projects update

The status of ongoing projects will be briefly presented.

- P384/ HARMO-TRACK project, which aims to harmonise data formats and thresholds for track geometry and dynamic measurements.
- P652/ CROSS-T project aimed at ensuring safe train operations when crossing in mixed traffic lines.
- P653/ AERONOISE project, which focuses on developing an improved noise emission measurement method for high-speed trains.
- P703/ DYNMEASURE project, which aims to identify the right framework for application
 of the various measuring systems trackside and on-board.
- P849 / CONFORCES project, which aim to validation of measurements of the Wheelrail contact forces through instrumental wheelsets for UIC Leaflet 518 homologation purposes.

12:00-12:20 Point 7. Migration plan

Follow-up and decision on revision of leaflets and IRS.

12:20-12:45 Point 8. AOB and Next Meeting dates

Next meeting.

12:45-13:00 Final remarks and closure

Anup Chalisey, Chairman for the TTI Sector.

13:00-14:00 Lunch

Lunch at the Málaga TechPark.

POINT 1. WELCOME REMARKS AND GENERAL INFORMATION

OPENING AND WELCOME FROM THE CHAIRMEN

Anup Chalisey

TTI Chairman

Head of Infraestructure at RSSB

David Villalmanzo
Infraestructure Chairman
General Manager Strategic Partnerships and
Coordination at ADIF

Short Round table

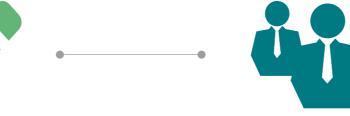
UIC RSF General Information & News from UIC

UIC: a long history of serving member railways and facilitating international railway cooperation

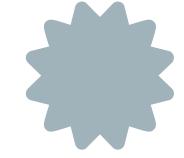
1922

Intergovernmental (diplomatic) conference in Genoa, Italy

2022


200 member railways in 95 countries

100th anniversary



Intergovernmental (diplomatic) conference in Portorož, Slovenia (formerly in Italy)

October 1922

Constitutive Assembly of UIC (Paris): UIC statutes adopted by 51 railway administrations in 29 countries (Europe, Asia)



UIC in figures

3 fora

50 events per year

23
sectors

7
platforms

3,000 billion passenger-kilometres

10,000 billion tonne-kilometres million kilometres of line

million rail personnel

UIC in 2025

122 EUROPE

16 MEMBERS

AFRICA

Burkina Faso Mauritania

Ethiopia South Africa

Libya

Niger

Sudan

Tunisia

Morocco

Senegal

Algeria

Egypt

Gabon

Kenya

Cameroon

DR Congo

Ivory Coast

France Austria Germany Belarus Greece Belgium Bosnia and Hungary Ireland Herzegovina Bulgaria Israel* Italy Croatia Czechia Latvia Lithuania Denmark Luxembourg Finland

Serbia Montenegro Netherlands Slovakia North Slovenia Spain Macedonia Sweden Norway Poland Switzerland Portugal Türkiye* Romania Ukraine Russian United Federation* Kingdom

51

MEMBERS

ASIA PACIFIC

Afghanistan Saudi Arabia
Iran (Islamic Syrian Arab
Republic of) Republic
Iraq Türkiye*
Israel* United Arab
Jordan Emirates
Oman

MIDDLE-

EAST

Malaysia Armenia Mongolia Australia Philippines Azerbaijan Republic of China Chinese Korea Russian Taipei Georgia Federation* Thailand India Vietnam Japan Kazakhstan

*Members with dual regional membership.

**Considering these dual regional memberships, the total number of UIC Members is not equal to the number of members from each region.

UIC's mission

Promoting the development of rail transport globally to respond to challenges in respect of mobility and sustainable development

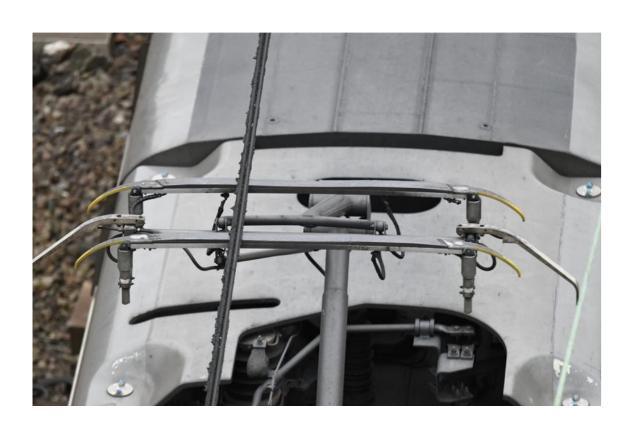
KEY ACTIVITIES

INNOVATION

SPECIFICATIONS

DISSEMINATION

STRATEGIC ADVICE

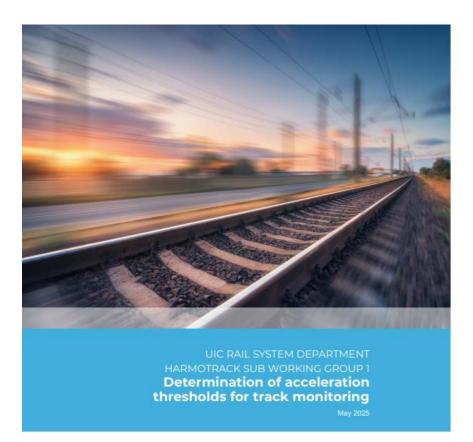

Technical Sectors of the UIC

CCS and Operations Sustainability and safety Telecom Railway Infraestructure Asset Digital Mangement Subsystem **Train - Track Interaction** Modelling (TTI) High Speed Rolling Stock Energy Freight

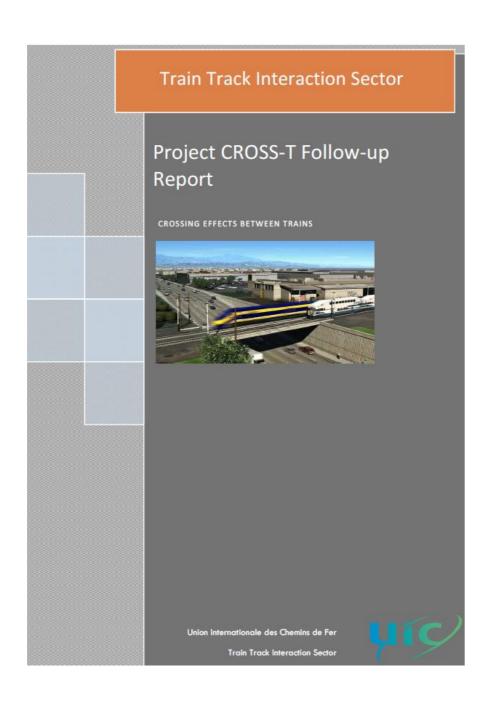

> SWG Aerodynamic and Acoustics

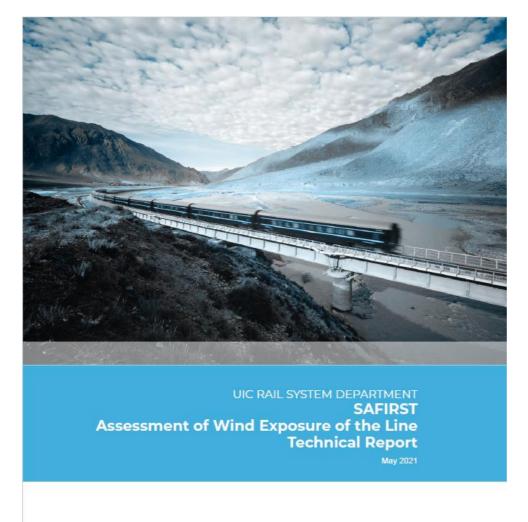
> SWG Railway Dynamics & Gauges

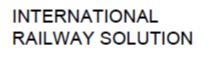
> Innovative Transport



TTI is the UIC's reference forum for studying the interaction between trains and infrastructure, balancing performance, safety and sustainability, and providing railway managers with updated standards, guidelines and knowledge to achieve a more efficient and interoperable railway system.


Main objectives


- ✓ Improve the operational, economic, and environmental efficiency of the railway system.
- ✓ Ensure safety and strengthen international interoperability.
- ✓ Identify and anticipate the impact of changes in any of the subsystems (infrastructure, rolling stock, operations, environment, regulations).



Prevention and Mitigation of Derailment (PMD)

IRS 70729

1st edition, 2019-10

INTERNATIONAL RAILWAY SOLUTION

IRS 50505x1 - Ed. 1

t edition:

Railway transport stock Rolling stock construction gauge

IR\$ 70729:2019

LINK: https://shop.uic.org/en/


15th International Workshop on Railway Noise

15-19 September 2025 - Isla de la Toja, Spain

WCHSR 2025 – Introduction

From 10 to 12 July 2025, Beijing hosted the 12th UIC World Congress on High-Speed Rail, bringing together over 2,000 participants from more than 60 countries - organised in collaboration with China State Railway Group (CR) and the China Academy of Railway Sciences (CARS).

The UIC RERA projects address the impact of heavy rain and high temperatures on railway infrastructure in the context of climate change.

Through frameworks for risk, vulnerability and adaptation planning, they provide scalable guidance for infrastructure managers. The goal is to strengthen resilience, integrate climate data into planning, and promote knowledge sharing across the railway sector.

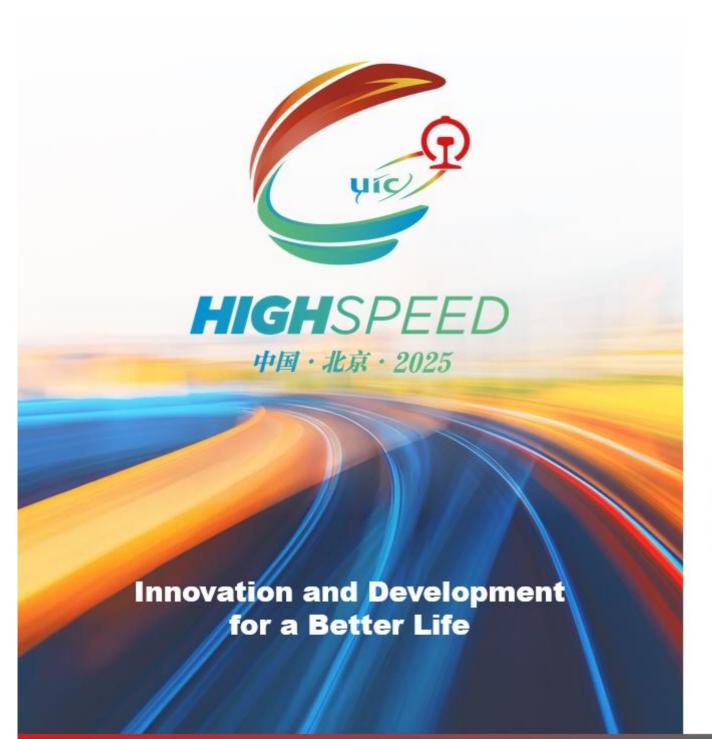
12th UIC WORLD CONGRESS ON HIGH-SPEED RAIL 8-11 July 2025 - Beijing, China

UIC *Aeronoise* project

A simplified approach for measurement of aerodynamic noise emitted by high-speed trains

Jaume Solé-Bosquet

Chief Technical Engineer, SENER Mobility, Spain


Session 3.5 - Socio-Economics, Environment & Commercial

The Aeronoise project, led by UIC with partners such as HS2, SNCF, ADIF, Trafikverket, Banenor, and SZ, develops a simplified and costefficient methodology to measure aerodynamic noise from high-speed trains.

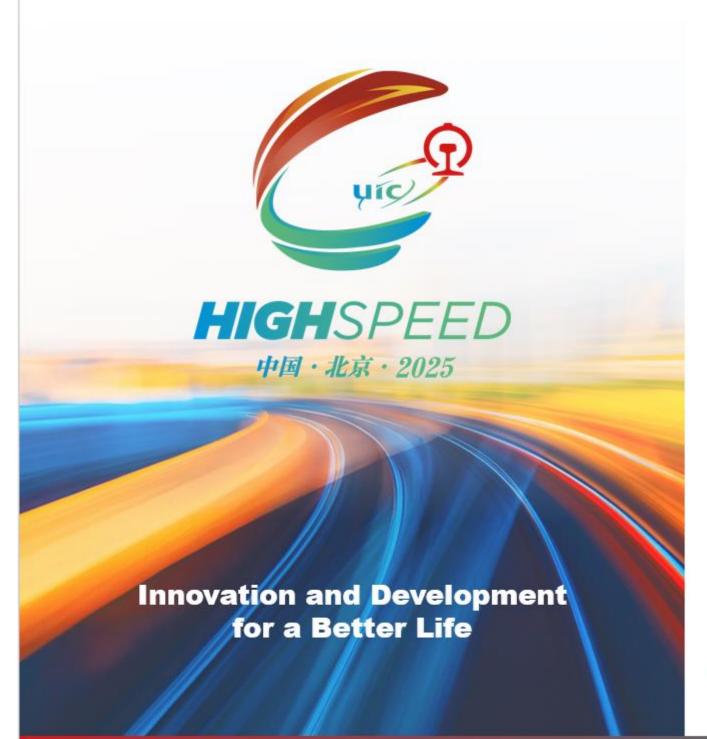
Focusing on upper train areas and pantograph noise, it enables quick and objective comparisons of emissions. Following validation campaigns in France and Spain, the project will deliver a new UIC IRS with the finalized methodology by 2026.

12th UIC WORLD CONGRESS ON HIGH-SPEED RAIL 8-11 July 2025 - Beijing, China

UIC CONFORCES project

Safety and Dynamic Performance Testing of High-Speed Railway Vehicles Using Instrumented Wheelsets

Luis Baeza


Full Professor at the University of Valencia

This study addresses the limitations of instrumented wheelsets used for UIC 518 homologation at very high speeds. While conventional methods assume a linear strain—force relationship and neglect dynamic effects, this simplification becomes questionable at commercial speeds of 350 km/h and above.

By employing advanced axisymmetric dynamic models that incorporate flexibility and inertial effects, the research demonstrates deviations of up to 10% between measured and actual forces, highlighting the need for more accurate methodologies in high-speed applications.

12th UIC WORLD CONGRESS ON HIGH-SPEED RAIL 8-11 July 2025 - Beijing, China

UIC DYNMEASURE project

Revolutionizing Rail Safety with Axle Load Monitoring Systems

Joaquin Botella
Sener Mobility Spain

This project investigates next-generation Axle Load Measurement Detectors (ALMDs) to improve rail safety and infrastructure protection.

Al- and data-driven systems enhance detection accuracy, reduce false alarms, and predict maintenance needs. Integrated with complementary monitoring tools, ALMDs provide a holistic safety framework, with case studies demonstrating benefits and recommendations to strengthen European regulations and global railway reliability.

15th International Workshop on Railway Noise

15-19 September 2025 - Isla de la Toja, Spain

Latest developments in the UIC Aeronoise project: a simplified methodology for measurement of aerodynamic noise emissions from high-speed trains

<u>Jaume Sole</u>¹, Gennaro Sica², Pierre Huguenet¹, Daniel Lurcock³, Baldrik Fauré⁴ and Rosa Casquero⁵


¹SENER Mobility SA. E-mail: jaume.sole@mobility.sener

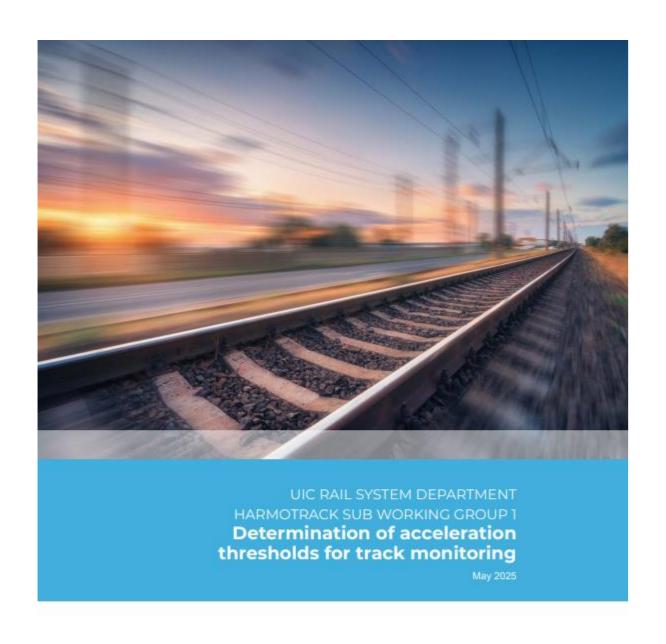
²HighSpeed 2 Ltd. London-UK ³ISVR, University of Southampton-UK ⁴SNCF, Saint Denis-France ⁵International Railways Union (UIC), Paris-France

The UIC Aeronoise Project aims to simplify the measurement of aerodynamic noise from high-speed trains, which becomes critical above 250 km/h and is difficult to mitigate with conventional barriers.

Using standard microphones and simple postprocessing, the project enables objective assessment of noise emissions at different heights, overcoming the complexity and cost of traditional methods.

2025 JOINT CONFERENCE
COLORADO SPRINGS, CO USA | NOVEMBER 17-21, 2025

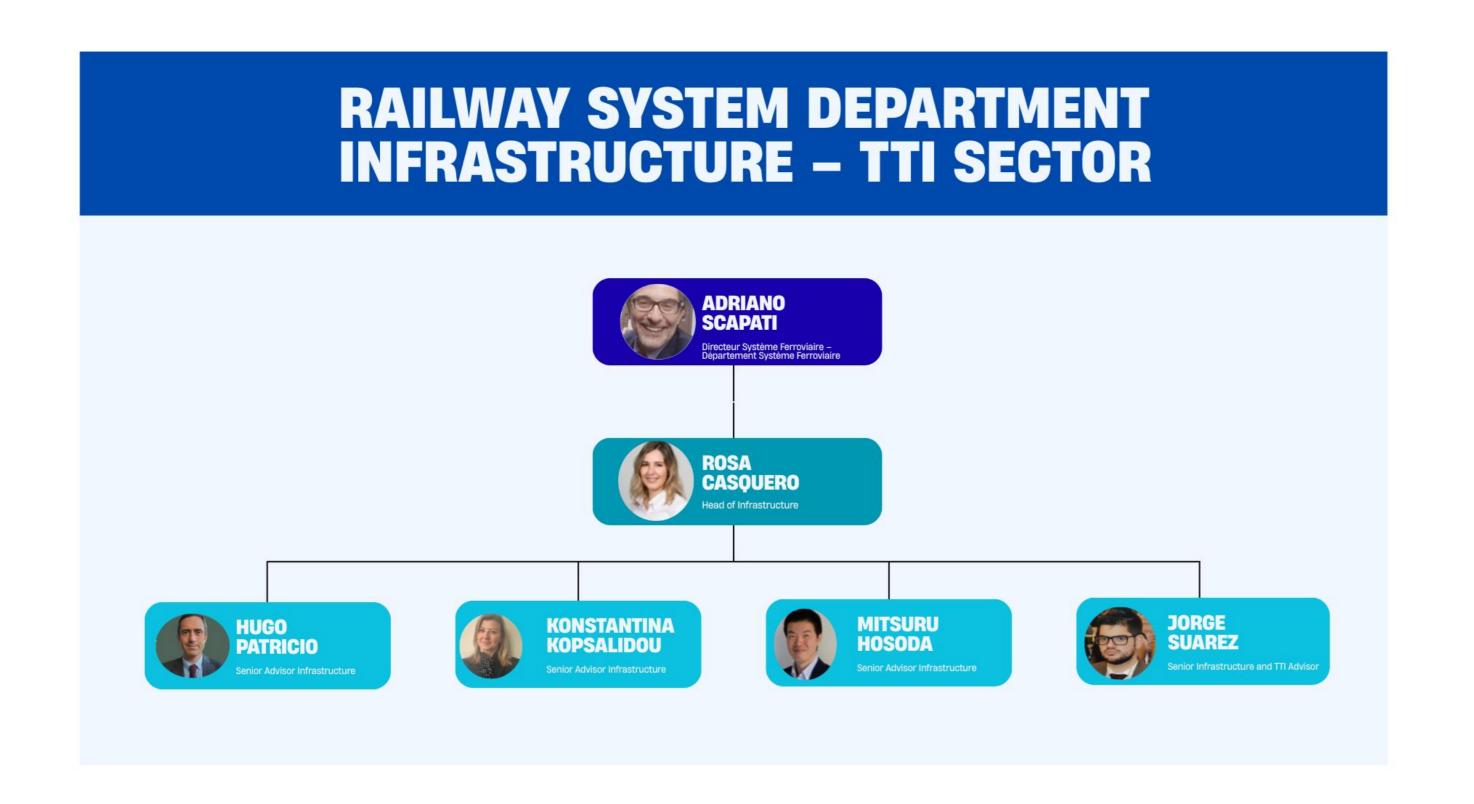
CROS-T


The UIC CROSS-T project studies the aerodynamic loads generated when high-speed trains pass freight trains in tunnels, where pressure waves can affect wagon safety and operations. Through simulations, it seeks to define limits and provide international guidance to ensure safe mixed traffic, improve interoperability, and support the shift of freight to rail.

News from UIC

EXCELLENCE IN RAILWAY PUBLICATION AWARDS 2024

Harmotrack



UIC RSF General Information

Rail System Forum

RAIL SYSTEM FORUM Robert Ampomah (NR)

TRAIN TRACK INTERACTION SECTOR
Chairman Anup Chalisey (RSSB)

Directeur Système Ferroviaire Welcome

SCAPATI Adriano

Directeur Système Ferroviaire

INTRODUCTION OF ADRIANO SCAPATI DIRECTOR OF RAIL SYSTEM DEPARTMENT

Mr. Adriano SCAPATI – UIC Rail System Dept. (seconded from "Ferrovie dello Stato Italiane" Group)

- About 30 years of experience across the aerospace, automotive, and railway sectors, from the launch of the Italian "High-Speed System" on 1996 (new Rolling Stock and Infrastructure Design Phases, Testing and Commissioning, Maintenance, Signalling Systems, Depot and facilities at the stations) to the Operation of Intercity and International trains (in collaboration with SBB, SNCF, OBB, etc. Managing Director and Member of Boards of Operation of "Cisalpino", "Thello" and other European Operators).
- Last experience (2019-2024) as "Rolling Stock and Depot Director" (London) on the "High Speed 2 Projects" on the West Coast Main Line, in collaboration with the UK Department for Transport and First Group Ltd. Stakeholder coordination, strategic and railway system vision, risk assessment, policy alignment, and strategic innovation, particularly in areas such as safety, sustainability, and customer travel experience.
- Professional experiences and relations have led me to work on complex and multicultural projects and teams, often in constantly evolving regulatory and technological contexts (Europe). I have led international teams in the definition and implementation of advanced solutions in the signalling systems (ATO, ERTMS), safety, digitalization of infrastructures and focus on the customer experience and services.

I am deeply inspired by UIC's mission to foster global cooperation in the railway sector. I believe that the future of rail mobility depends on our collective ability to merge innovation with standardization, sustainability with efficiency, and local needs with international visions. Joining UIC in this pivotal leadership role would allow me to contribute not only my engineering and managerial expertise, but also my commitment to a shared, forward-looking rail system.

POINT 2. KEY INVITED SESSIONS

TTI sector - looking forward. Anup Chalisey. RSSB Flying ballast. Miguel Rodríguez. ADIF

SWG Parallel Invited Session

SWG Pantograph-Catenary

- 1. Pantograph testing for simulation models. Manuel Tur. Polimi-UPV-Huddersfield
- Investigate pantograph-catenary interaction issues in neutral zones. Mehdi Dib. RAIL ELECT Spa - Groupe GCF(SNTF)
- Current Developments in Rigid Catenary

 —Pantograph Wear Reduction: Insights from the University of M\u00e1laga. Vid Bacic. Universidad de M\u00e1laga.

SWG Railway Dynamics and Gauges

Data-oriented

From Track to Tool: Turning Data into Compatibility Decisions. Amine Chakir SNCF

InterActive Pads for monitoring the interaction Wheel-Rail. Miguel del Sol. Universidad de Granada.

Extension of Rail Replacement Cycle Using Rail Health Index Reflecting Onboard Train Data (Axle Box Acceleration Measurement etc). Mitsuru Hosoda. UIC-RTRI

Al-Enhanced Condition Monitoring of Railway Infrastructure Using Onboard and Wayside Systems. Diogo Ribeiro. ISEP

Track component-oriented

Reduction of rapid variations in track stiffness around e.g. bridges and tunnels. Björn Paulsson Chalmers University of Technology.

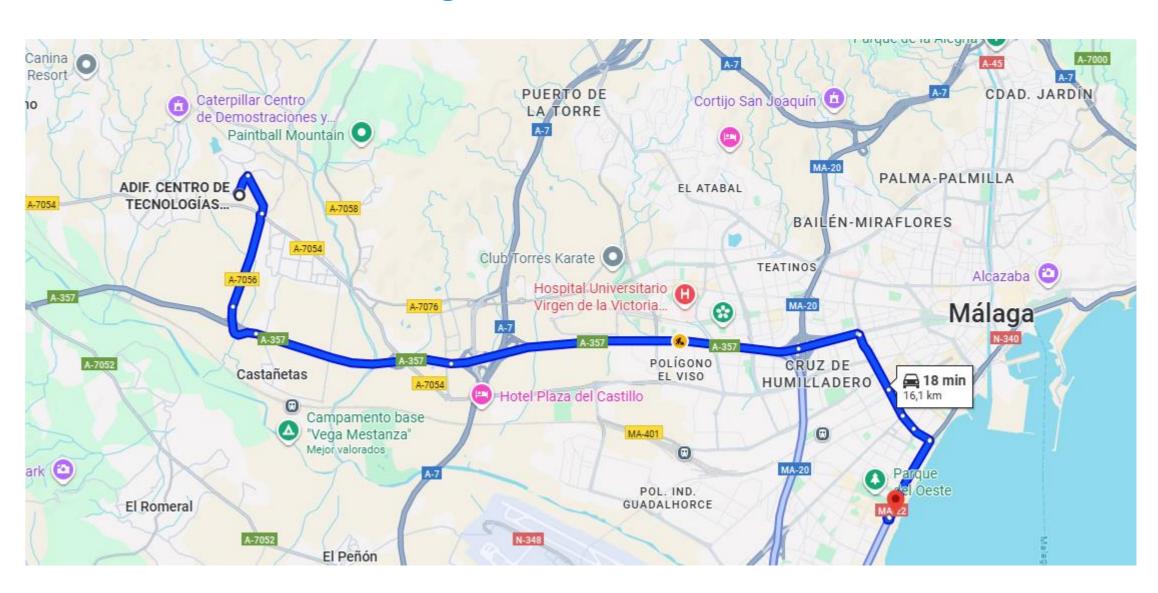
Fatigue resistance required for rail fastening systems considering the occurrence tendency of lateral forces at curved sections of narrow gauge track. Tadashi Deshimaru. RTRI.

A new calculation framework for railway track designers and maintainers to better understand and estimate service loads. Yann Bezin. University of Huddersfield.

The dynamic amplification of railway loads in the design of under-track structures. Andrea Latorre. RFI.

Social Dinner

Starting at 20:00 CET



Chiringuito La Campana Playa

Paseo Marítimo Antonio Banderas, 9, Carretera de

Cádiz, 29004 Málaga

POINT 3. SUBWGS PARALLEL INVITED SESSION

15' Break time

See you tomorrow

Starting at 9:00 CET

Day 2. 18th September 2025

09:00-10:45 Point 4. Workshop on TTI strategy

Parallel working sessions on the different TTI SubWGs

Identifying key topics and building the Mission and Vision.

SWG Railway Dynamics and Gauges.

SWG Pantograph-Catenary.

General session to exchange each SubWG's conclusions.

10:45-11:00 Coffee break

11:00-11:30 Point 5. Opt-In 2026

Reminder and preparation of proposed opt-in projects for 2026.

11:30-12:00 Point 6. Ongoing projects update

The status of ongoing projects will be briefly presented.

- P384/ HARMO-TRACK project, which aims to harmonise data formats and thresholds for track geometry and dynamic measurements.
- P652/ CROSS-T project aimed at ensuring safe train operations when crossing in mixed traffic lines.
- P653/ AERONOISE project, which focuses on developing an improved noise emission measurement method for high-speed trains.
- P703/ DYNMEASURE project, which aims to identify the right framework for application
 of the various measuring systems trackside and on-board.
- P849 / CONFORCES project, which aim to validation of measurements of the Wheelrail contact forces through instrumental wheelsets for UIC Leaflet 518 homologation purposes.

12:00-12:20 Point 7. Migration plan

Follow-up and decision on revision of leaflets and IRS.

12:20-12:45 Point 8. AOB and Next Meeting dates

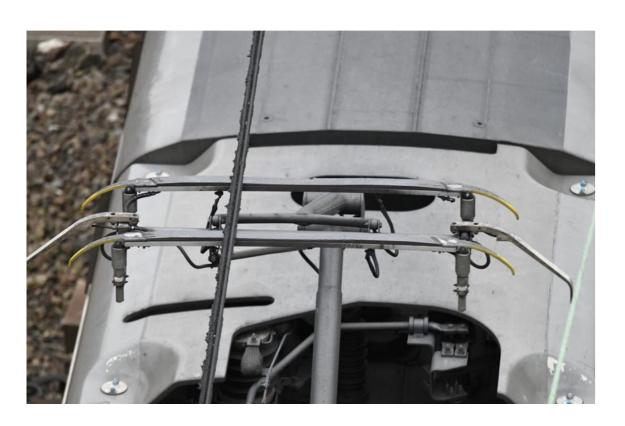
Next meeting.

12:45-13:00 Final remarks and closure

Anup Chalisey, Chairman for the TTI Sector.

13:00-14:00 Lunch

Lunch at the Málaga TechPark.



POINT 4. WORKSHOP TTI STRATEGY

Parallel Working Sessions

- > SWG Railway Dynamics & Gauges
- Rosa y Mitsuru
- Konstantina y Jorge

- > SWG Pantograph-Catenary
- Anup

Part 1: Vision, Engagement & Collaboration

- **Define Clear Mission & Vision:** Understand TTI's unique value to the industry.
- **Strengthen Member Engagement**
 - ✓ Promote active involvement of members
 - ✓ Improve the Opt-in process, focusing on member needs.
 - ✓ Increase critical mass in each subsector.
- Enhance Collaboration
 - ✓ Improve links with other groups (PoSE, RST, ENE, Track Experts).
 - ✓ Establish an RU/IM advisory board to understand expectations.
- **Recognition:** Be the go-to UIC unit for transversal topics

Part 2: Meetings, Knowledge & Competitiveness

Optimize Meetings

- ✓ Make meetings more engaging to attract in-person attendance
- ✓ Consider meeting formats: out-of-Paris physical meetings, plenaries per subgroup, more (online) SWG meeting.

Knowledge Sharing

- ✓ Organize seminars/workshops on operational/maintenance issues.
- ✓ Develop training programs with UIC Academy and other experts.

© Strategic Focus & UIC's Value

- ✓ Survey industry for key issues to shape strategy.
- ✓ Align TTI strategy with other sub-sectors.
- ✓ Address critical infrastructure (defense, climate change).
- ✓ Define UIC's competitive advantage, especially against environments offering financial returns.
- ✓ Focus on pre-standardization steps and recommendations for using standards

SWG Aerodynamic and Acoustics

Enhanced Cooperation

Improve collaboration and define competences with UIC Noise & Vibration (N&V) Expert Group to avoid overlap.

Technical Priorities

- ✓ Integrate acoustics into other areas (e.g., Pant-Cat interaction).
- ✓ Address ISO 3095 / TSI for better aerodynamic noise characterization.
- ✓ Guideline for operational conditions of crossing trains (infra & RS considered).
- ✓ Speed is not the only key factor.
- ✓ Investigate top-of-rail materials for reduced noise/wear.
- ✓ Set requirements for high-speed rolling stock aerodynamic noise and a guideline for wind tunnel acoustic tests.

Industry Involvement

Attract manufacturers like Talgo, CAF, Alstom.

SWG Railway Dynamics & Gauges

Rolling Stock & Infrastructure Interaction

- ✓ Evaluating how new trains impact track maintenance.
- ✓ Creating a system for sharing train data between operators and infrastructure managers...

Gauging & Standardization

- ✓ Developing a practical "how-to" guide for gauging (the space trains need to pass).
- ✓ Promoting a unified gauge and assessment method across Europe. Fewer complications.

Track Lifecycle & Performance

- ✓ Investigating how to increase track life (up to 60 years!) and related maintenance.
- ✓ Assessing how to apply "Harmotrack" outcomes to improve infrastructure management.

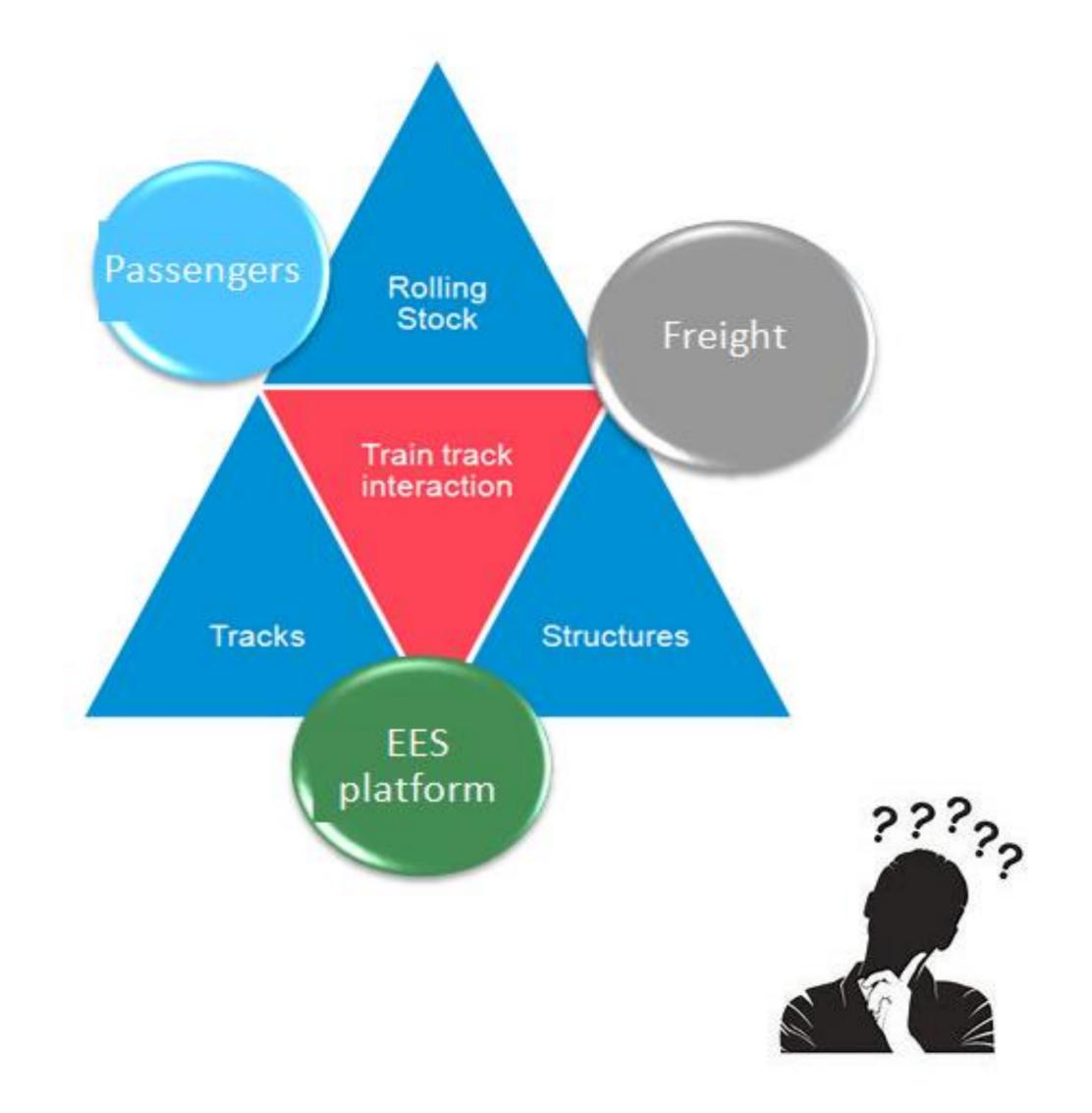
High-Speed Comfort

Reviewing homologation for trains over 300km/h to ensure maximum passenger comfort.

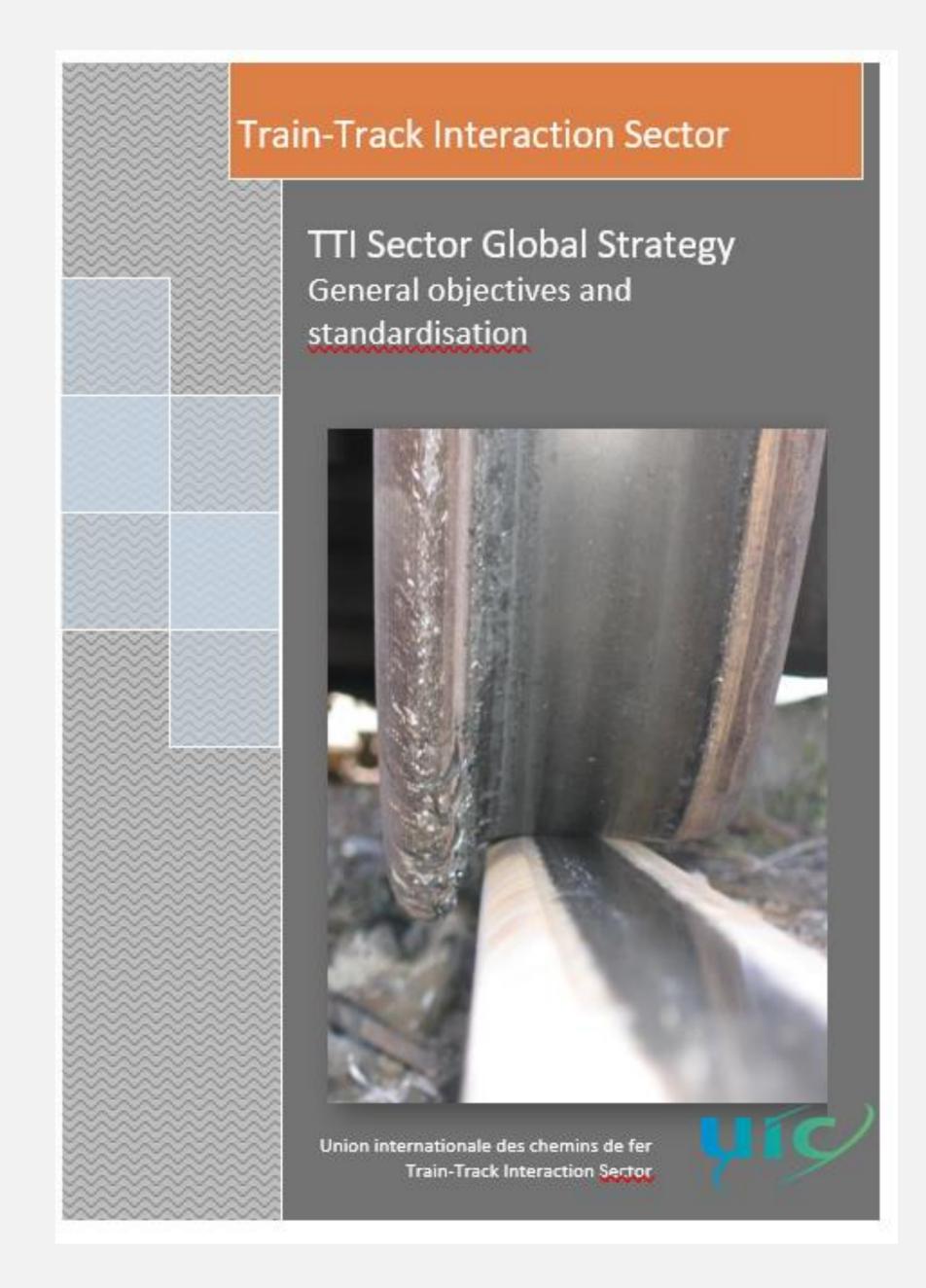
Publish the White Paper and ensure operational safety

SWG Pantograph-Catenary

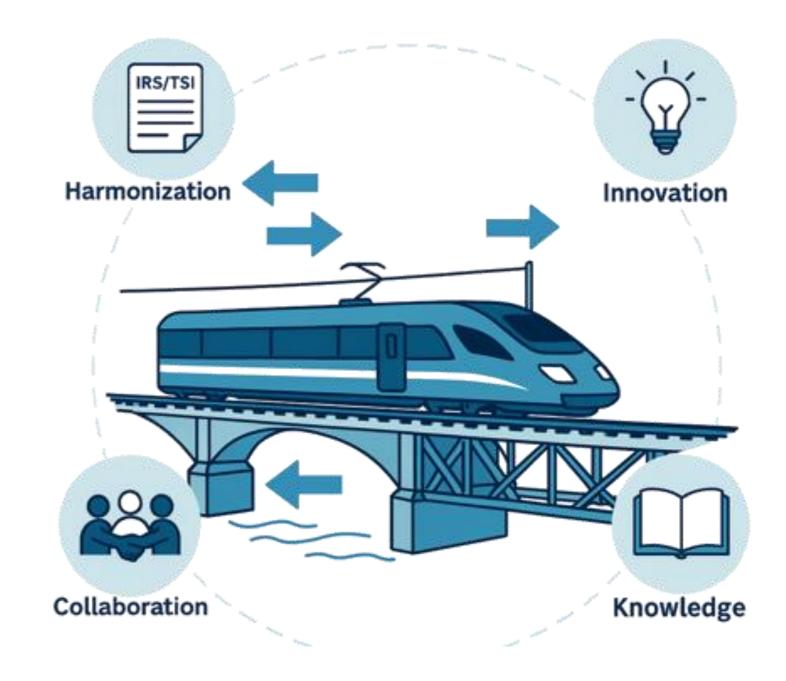
Collaboration & Key Issue


- ✓ Increase cooperation with the Rolling Stock sector (short-term project).
- ✓ Study frequent pantograph-induced catenary breakages to find solutions.
- ✓ Investigate pantograph-catenary interaction issues in neutral zones, especially with new operators.

Simulation & Testing Advancement


- ✓ Promote simulation and lab testing to substitute on-track tests.
- ✓ Build confidence by comparing simulations with real measurements and diverse configurations.
- ✓ Apply railway dynamics simulations to pantograph-catenary interaction studies (co-simulations).
- ✓ Develop pantograph testing for simulation models and more realistic overhead line models.

Strategy and objectives



TTI Sector - Strategic Objective

Strengthen the TTI sector by positioning it as the international technical reference for the interaction between railway infrastructure and rolling stock, driving collaboration among IM and RU fostering innovation, standardization, and knowledge transfer within the UIC.

TTI Sector - Strategic Abstract

1. Alignment with IMs and RUs 2. Strengthening SWGs 3. Visibility & Communication 4. Innovation & Strategic Projects 5. Synergies & Standardization

AXIS 1: ALIGNMENT WITH IMs and RUs

- Identify key IMs and RUs contacts.
- Conduct surveys on technical priorities.
- Analyze the current technological landscape.

Journal of Wind Engineering & Industrial Aerodynamics 239 (2023) 105458

Contents lists available at ScienceDirect

Journal of Wind Engineering & Industrial Aerodynamics

journal homepage: www.elsevier.com/locate/jweia

A review on aerodynamic load and dynamic behavior of railway noise barriers when high-speed trains pass

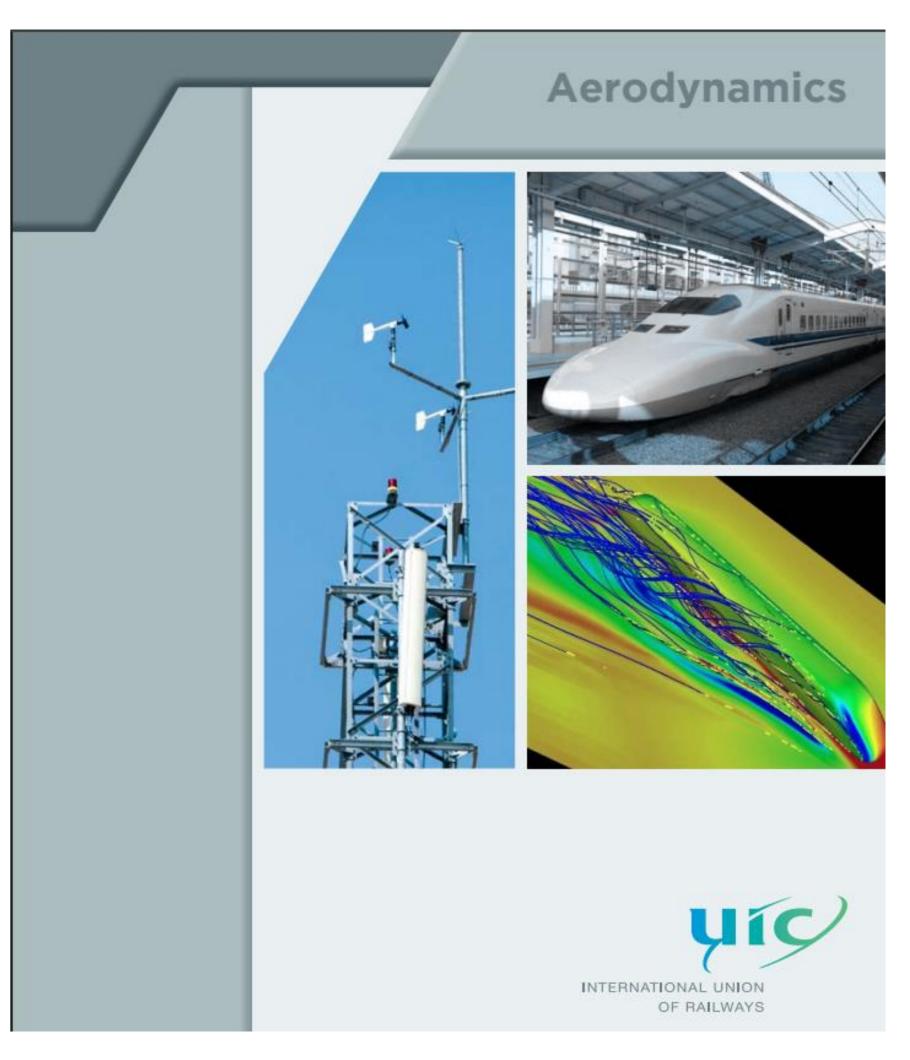
Dongyun Liu^a, Chao Wang^{a,*}, Jaime Gonzalez-Libreros^a, Yongming Tu^{a,b}, Lennart Elfgren^a

Division of Structural and Fire Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå,

b Key Laboratory of Concrete and Prestressed Concrete Structures of Ministry of Education, National Engineering Research Center for Prestressing Technology, School of Civil Engineering, Southeast University, 211189, Nanjing, PR China

ARTICLEINFO

Noise barrier Railway High-speed train Aerodynamic load Dynamic response


ABSTRACT

Noise barriers need to be installed along high-speed railway lines to protect nearby inhabitants from the noise pollution caused by the running of high-speed trains (HSTs). The vertical noise barrier is the main structural type. However, when an HST passes through the noise barriers sited along the track, significant and transient aerodynamic pressure will act on the surface of the noise barriers, resulting in strong dynamic responses and even fatigue damage. Therefore, it is important to determine the train-induced aerodynamic load on the barrier surface and analyze the dynamic behaviors of the noise barriers under such a load for its structural design and to guarantee its safety and durability. This paper is a systematic review of the current literature on the aerodynamic load and dynamic behavior of vertical noise barriers; it includes (1) a summary and analysis of characteristics of such aerodynamic pressure and relevant influencing factors, (2) an introduction to measurement methods of aerodynamic load and relevant pressure models on the surface of noise barriers, and (3) a description of the dynamic response and fatigue analysis of noise barriers under such loads. Finally, potential further studies on this topic are discussed, and conclusions are drawn.

AXIS 2: STRENGTHENING SWGs

- Consolidate existing thematic areas.
- Define mission and vision for each group.
- Publish technical whitepapers.
- Minority sectors: Aerodynamics & Acoustics, and Pantograph-Catenary Interaction, with few experts spread across different countries.
- Need for TEG coordination to collaborate differentiate.

AXIS 3: VISIBILITY AND COMMUNICATION

- Increase global awareness and participation.
- Organize technical webinars.
- Create a TTI newsletter/observatory.

AXIS 4: INNOVATION AND PROJECTS

- Promote strategic Opt-In projects.
- Launch 'TTI Innovation Challenges'.
- Promote publication of articles in high-impact journals

Sub Working Group 1

Determination of acceleration thresholds for track monitoring

Technical report

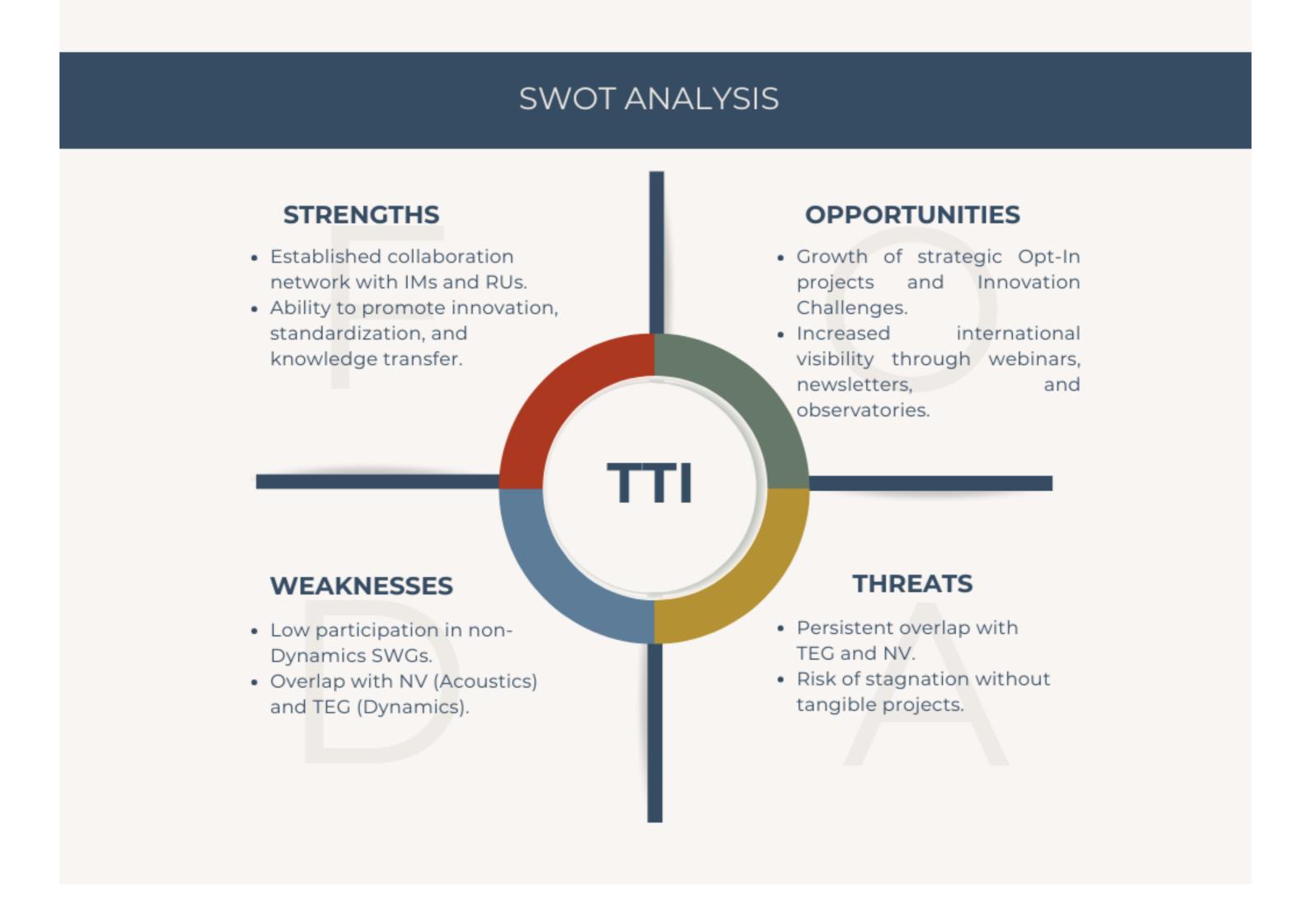
AXIS 5: SYNERGIES AND STANDARDIZATION

- Collaborate with ERA and standardization bodies.
- Coordinate UIC Leaflets to IRS migration.

Moving Europe towards a sustainable and safe railway system without frontiers.

Objetives: Success Indicators for ETTI Opt-in (2026)

- Four players: RFI, ADIF, Network Rail, SNCF, DB, OBB
- Two/Three mid players: IP, SBB, Trafikverket.
- RSSB as a constant presence.



Current weaknesses

- Low participation in non-Dynamics SWGs
- Overlap with NV sector (Acoustics)
- Overlap with TEG sector (Dynamics)
- Difficult to find experts beyond academia
- Few experts are UIC members → weak sector base
- UIC can offer a common collaboration framework
- Better to boost specific projects than only rely on meetings

SWOT ANALYSIS

News from UIC

UIC Opt-In Process

Members express needs through UIC Working Bodies

Members assess projects proposals and validate proposals lists in Working Bodies plenary sessions

Members **express interests** via specific interest forms

Members take financial commitments based on the contributions

table

Members process payments to UIC

Sep – Dec 2024

Mar – Apr 2025

3

May – Jun 2025

5

Jul – Sep 2025

Jan – Mar 2026

DESIGN

AGREEMENT

KICK OFF

2025 Jan – Mar

UIC Working Bodies refine needs

2025 Apr – May UIC

presents projects proposals

to all Members during held in May 2025

Jul UIC

provides the contributions table

2026 Jan

2026 from Jan

UIC

and Members

kick off projects


10

and formalize project proposals an annual workshop which will be

sends invoices to Members based on their financial commitments

UIC

15' Break time

POINT 5. OPT-IN PROJECTS FOR 2026

News from UIC

UIC Opt-In Process

Members express needs through UIC Working Bodies

Members assess projects proposals and validate proposals lists in Working Bodies plenary sessions

Members **express interests** via specific interest forms

Members take financial commitments based on the contributions table

Members process payments to UIC

Sep – Dec 2024

Mar – Apr 2025

3

May – Jun 2025

5

Jul – Sep 2025

Jan – Mar 2026

DESIGN

AGREEMENT

KICK OFF

2025 Jan – Mar

UIC Working Bodies refine needs

2025 Apr – May UIC

presents projects proposals

to all Members during and formalize project proposals an annual workshop which will be held in May 2025

Jul

UIC provides the contributions table based on projects budgets

2026 Jan

2026

10

from Jan

to Members based on their financial commitments

UIC

sends invoices

UIC and Members kick off projects

WORK PROGRAMME 2026

ETTI
(Experts Group on Train-Track Interaction)
2026/RSF/XXX

Rosa CASQUERO (Head of the TTI Unit)

Background

The UIC TTI Group of Experts was born several years ago to address the railway cross-cutting subjects of acoustics, aerodynamics, dynamics, gauges and pantograph-catenary interaction. Its most characteristic features are the wide variety of topics and their great complexity, leading to a shortage of experts on the subject..

This group had never own budget, whereas most of the UIC sectors are financed to have own resources and avoid dependency form UIC specific opt-ins or external incomes.

Scope

Enhance the group of train-track interaction experts to become the world reference on this complex railway issues. It's key to have a sufficient number of experts in all the disciplines involved, to establish together the sector strategy and to produce high added value to solve the railway community's problems in this field.

Duration & Cost

- From 2026 on Permanent activity
- Per year : 75 k€ (reduced fee for TEG&PoSE members)

Objectives, Drivers & Benefits

Objectives

- Address the railway cross-cutting subjects of acoustics, aerodynamics, dynamics, gauges and pantograph-catenary interaction
- Set the sector strategy and follow a clear roadmap to make these disciplines grow up
- Become a forum of knowledge exchange of numerous experts from all the associated fields
- Identify key projects and research actions to be developed at UIC or in collaboration with other bodies (academia, laboratories, safety agencies, standardization bodies, funding institutions, etc.)
- Organize technical seminars/workshops/activities to share and enhance knowledge and expertise
- Provide trainings to own and external members

Benefits

- Increasing train-track interaction expertise to provide specific solutions for complex current problems
- Influence and collaborate on key regulations/standards related to TTI (CEN, ISO, AREMA, TSI...)
- Have a dedicated forum of exchange (so far there is nothing equivalent on these fields)
- Train UIC members on this complex engineering subjects

Drivers

- Increasing knowledge
- Solving complex railway problems

TTI complexity

- Understanding train-track interaction requires deep knowledge on infrastructure and vehicle
- It requires a thorough knowledge of physics and mathematics applied to railways
- Most experts have knowledge just on one side
- Finding the right experts is key

Some examples of TTI most relevant concerns

- Wheel-rail contact mechanics, transition zones or components' degradation models
- High-Speed and Very-High-Speed Train Dynamics (critical speed, dynamic stability, etc.)
- Noise and Vibraton: structure-borne noise, ground vibration, mitigation measures
- Aerodynamic knowledge for mix-traffic operations' optimization
- Inconsistency of clearance gauges' national rules for cross-border operations
- Reliability of simulations for pantograph-catenary interaction tests

Deliverables, Dependencies & Support

Deliverables

- Internal report on specific topics (for project members)
 - Delivery date: upon demand of the ETTI
- UIC public Whitepapers (to describe the state of the art and identify knowledge gaps)
 - Delivery date: following the TTI roadmap
- UIC public reports (to share findings and exchanges on specific topics)
 - Delivery date: upon demand of the ETTI

Dependencies

- Strong collaboration with UIC Noise&Vibrations, Rolling Stock and Energy Sectors
- Coordination with standardisations bodies such as CEN or ISO
- Cooperation with ERA, EIM, CER and UNIFE among others

Support

Target audience: train-track interaction experts from IMs, RUs and academia

		YEARLY BUDGET I	ESTIM/	TE	
RESOURCES	Project contributions	75.000	€	from project members	
	TOTAL RESOURCES	75.000	€		
SPENDINGS	UIC staff	25.000	€		
	Subcontracting	30.000	€		
	Travels & receptions	12.000	€	seminars or workshops	
	General & administrat	ive 3.000	€		
	Other	5.000	€		
	TOTAL SPENDINGS	75.000	€		

WORK PROGRAMME 2026

CorruTrack
(Mechanisms and mitigation of rail corrugation)
2026/RSF/XXX

Rosa CASQUERO (Head of the TTI Unit)

« RSF » / « TTI » / « CorruTrack »

Background

Rail corrugation (wavy-shaped irregularity on the rail's rolling surface) causes multitude of impacts in the railway system:

- Track and infrastructure damage
- Operational disruptions: noise and vibrations, speed restrictions and affection to passenger comfort
- Wear and Tear on Rolling Stock
- Ultimately safety issues
- Operational and financial impact

Removal operations: regular grinding/friction modifiers/potentially full track replacement/purchase of affected buildings (severe cases).

Current situation: lack of agreed and definitive explanation for the mechanisms behind rail corrugation.

Scope

Provide deeper and agreed understanding of the mechanism, open tools to model it and also guidelines on preventive and corrective measures to minimize its appearance and growth.

Duration & Cost

- From 2026 to 2028- 3 years
- Per year : 90 k€ Total 270 k€

Objectives, Drivers & Benefits

Objectives

- Successfully simulate the specific mechanism behind the growth of rail corrugation as it occurs in real cases.
- Agree on the main mechanism(s) that cause the phenomenon
- Develop open tools to model it
- Provide guidelines for preventive and corrective maintenance to minimize its appearance/growth

Benefits

- Extend rail, wheel, track components and subgrade's lifespan
- Provide knowledge and solutions to increase railway maintenance's efficiency
- Reduce noise and vibration problems derived from corrugation
- Solve this long-standing engineering problem

Drivers

- Maintenance costs' reduction
- Enhancement of railway safety, operation and environmental performance

Key aspects to be considered

- Ability to precisely simulate the steady-state conditions experienced by a vehicle on curves
- Availability of complex models that capture the full range of track vibrations
- Availability of models for railway wheelset vibration that account for flexibility and rotational effects.
- Capacity to integrate non-steady wheel-rail contact models, thanks to recent development and advancements in computational power

Practical approach

- Project experts will provide diverse and real corrugation cases
- Simulations will be validated against the real cases
- Performance of field tests to check preventive/corrective measures derived from the project

Deliverables, Dependencies & Support

Deliverables

- Internal report (for project members)
 - Title: UIC project Corrugation, development and results
 - Delivery date: 2028
- UIC Guidelines
 - Title: Corrugation mechanisms and mitigation measures
 - Delivery date: 2028

Dependencies

Coordination with Noise and Vibrations Sector

Support

Target audience: Wheel-rail dynamics and maintennace experts from IMs and RUs

Budget

	YEARLY BUDGET ESTIMATE				
RESOURCES	Project contributions	90.000 €	from project members		
	TOTAL RESOURCES	90.000 €			
SPENDINGS	UIC staff	30.000 €			
	Subcontracting	45.000 €			
	Travels & receptions	7.000 €			
	General & administrative	3.000 €			
	Other	5.000 €			
	TOTAL SPENDINGS	90.000 €			

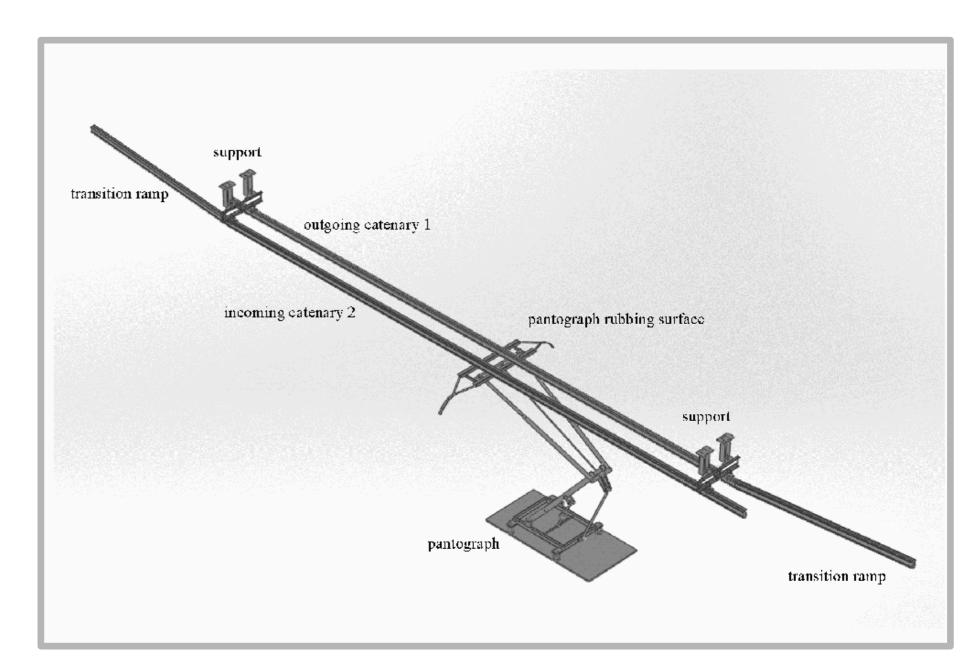
WORK PROGRAMME 2026

Model4Pant (Improvement of pantograph-catenary simulation tools) 2026/RSF/XXX

« RSF » / « TTI » / « Model4Pant »

Background

Simulations of OHL-pantograph interaction are an essential tool in designing new lines:


- Objectives : assistance for design of new lines, assessment the interoperability compliance (Energy and Loc&Pas TSI) and analysis of in-service problems
- Concerns: rely on models that imply uncertainties > quantification and improvement

Scope

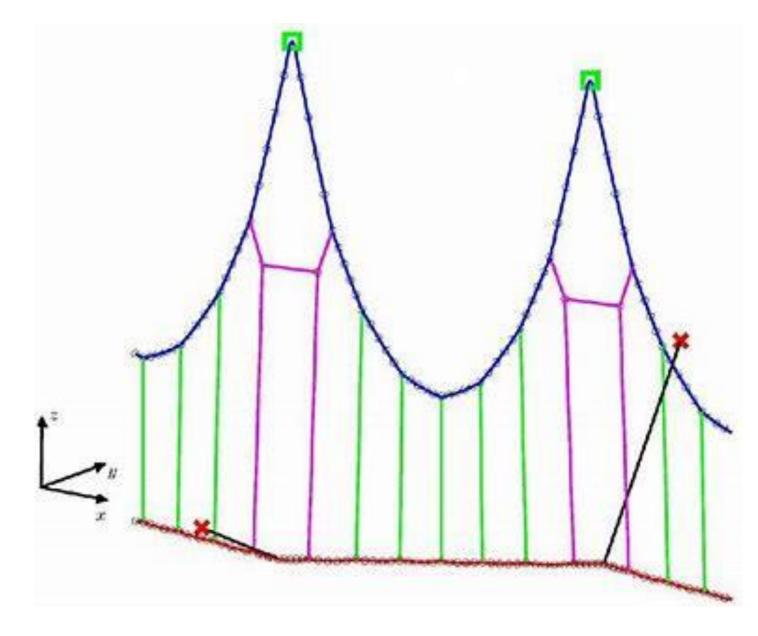
Strengthen OHL-pantograph simulation tools to increase their current reliability and foster their applicability as a powerful means to reduce costs and improve safety throughout the entire lifecycle of the electrification project.

Duration & Cost

- From 2026 to 2028- 3 years
- Per year : 90 k€ Total 270 k€

Objectives, Drivers & Benefits

Objectives


- Standardize how pantograph should be tested to obtain numerical models valid for simulations
- Provide an accepted procedure for dynamic testing and pantograph parameters acquisition
 - Develop a UIC methodology to build a pantograph model from lab test
 - Guide for choosing the best model for every overhead line type

Benefits

- Improve confidence on simulations: long-term goal of replacing in-line test by simulations
- Promote interoperability assessment by means of simulation
- Reduce homologation costs and tests costs
- Improve the exchange of data between different bodies

Drivers

- Cost reduction and time saving
- Safety enhancement

Limitations of the current standards

- EN50318 Validation of simulation codes & EN50317 Instrumented pantograph testing
 - Don't provide rules or guidelines to identify the parameters of the pantograph model
 - Each catenary type needs a different pantograph model for an accurate simulation

Methodology

- Build a pantograph model from laboratory test rig
- Simulate pantograph-catenary interaction using a simulation code
- Compare simulations with on-track results (contact force, contact wire elevation,...)

Additional information

- Consider a representative sample of pantographs, overhead line types and simulation codes
- Comparison of different lab testing technologies will be performed

Deliverables, Dependencies & Support

Deliverables

- Internal report (for project members)
 - Title: UIC project Model4Pant-Methodology, development and results
 - Delivery date: 2028
- UIC Guidelines
 - Title: Dynamic testing and pantograph parameters acquisition for pantograph-OHL simulations
 - Delivery date: 2028

Dependencies

- Close connection with UIC Energy and Rolling Stock Unit and experts
- Build connections with ERS for TSI aspects

Support

- Target audience: experts from IMs and Rus
- Strong support from universities

	YEARLY BUDGET ESTIMATE			
DECOURAGE		00.000	^	
RESOURCES	Project contributions	90.000	€	from project members
	TOTAL DESCRIPTION	00.000	•	
	TOTAL RESOURCES	90.000	€	
SPENDINGS	UIC staff	30.000	€	
	Subcontracting	45.000		
	Travels & receptions	7.000	€	
	General & administrativ	e 3.000	€	
	Other	5.000	€	
	TOTAL SPENDINGS	90.000	€	

UIC WORK PROGRAMME 2026

BridgeStiff 2026/RSF/xxx

Hugo Patricio

Senior advisor Infrastructure and Asset Management

Project Summary

« RSF » / « TTI » / « BridgeStiff »

Scope

- There is a strong correlation between a high substructure stiffness gradient and a high growth rate of local irregularities in vertical track geometry, and this fact is common around bridge abutments. Track stiffness measurement is an opportunity to find these locations and prevent further maintenance problems. Once these spots are located, simulations can be run to reduce the stiffness gradient with different track components combinations.
- The aim of the project is developing a cost-efficient and reliable stiffness measuring device, as well as a simulation tool to link the stiffness outputs with different track configurations. An IRS providing design and maintenance guidelines on stiffness management at bridges will be produced as well.

Duration & Cost

- From 2026 to 2028 3 years
- Per year : 100 k€ Total 300 k€

source: *Bridge Approaches and Track Stiffness,* Federal Railroad Administration 2007

Objectives, Drivers & Benefits

Objectives

- Develop a reliable and cost-efficient track stiffness measuring device
- Develop a simulation tool to asses system' stiffness under different track configurations
- Publishing an IRS providing design and maintenance guidelines on stiffness management at bridges

Drivers

- Safety and Reliability:
 - Ensuring the structural integrity and safety of railway tracks, especially around bridge abutments.
 - Reducing the risk of track failures and accidents by identifying and mitigating high stiffness gradients
- Cost Efficiency:
 - Developing a cost-effective stiffness measuring device to minimize expenses
 - Reducing long-term maintenance costs through early detection and optimization of track configurations

Benefits

- Early Detection: Identify locations with high stiffness gradients early, preventing further maintenance issues
- Cost Savings: Reduce maintenance costs by optimizing track configurations and addressing issues proactively
- Improved Safety: Enhance the safety and reliability of railway tracks, especially around bridge abutments
- Data-Driven Decisions: Use accurate stiffness measurements to make informed decisions about track design and maintenance
- Optimized Track Performance: Improve track performance by reducing stiffness gradients through simulation and optimization
- Comprehensive Guidelines: Provide clear design and maintenance guidelines for managing track stiffness, aiding in consistent and effective practices

Deliverables, Dependencies & Support

Deliverables

- Internal report
 - Stiffness Measuring Device prototype: A functional prototype of the stiffness measuring device.
 - Technical Specifications: Detailed documentation of the device's technical specifications and capabilities
 - Test Results: Reports on field tests and validation of the device's accuracy and reliability
- Simulation Tool
 - Software: A simulation tool that integrates stiffness measurement data with various track configurations
 - Simulation Models: Pre-built models for different track configurations and scenarios
- IRS for Stiffness Management:
 - A document providing design and maintenance guidelines for managing track stiffness at bridges
 - Case Studies: Examples and case studies demonstrating the application of the guidelines

Dependencies

- Historical Maintenance Data: Access to historical data on track maintenance and performance around bridge abutments.
- EU projects addressing transition zones and simulation models (In2Zone, In2Track3)

Support

Members supporting the Project Trafikverket

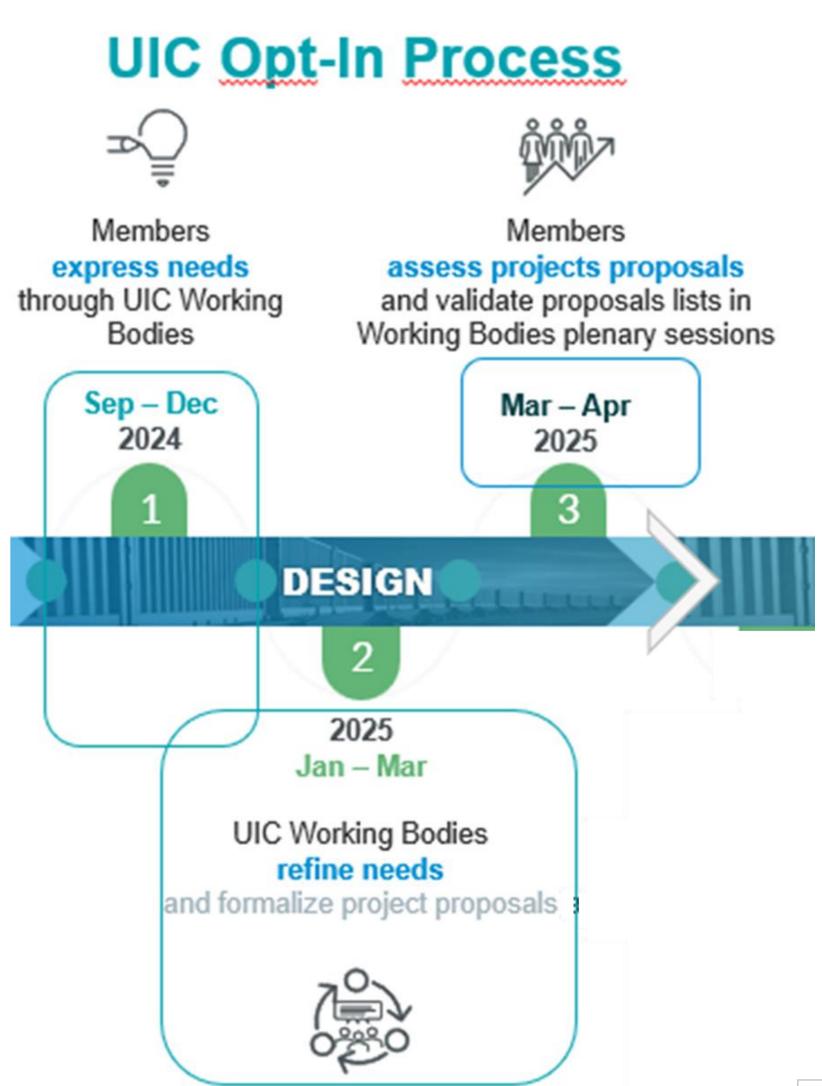
YEARLY BUDGET ESTIMATE			
RESOURCES	Project contributions Other income	100,000€	(Opt'in project members)
	TOTAL RESOURCES	100,000 €	
	•		
	Staff	21,000 €	(UIC Staff)
	Subcontracting	60,000 €	(Consultancy, etc.)
SPENDINGS	Others costs	7,000 €	(Documents, etc.)
	Travels & Reception	5,000 €	(Meetings, etc.)
	General & Administrative	7,000 €	(General support)
	TOTAL SPENDINGS	100,000 €	

Thank you for your attention

CONTACT **Hugo Patricio** Senior Advisor for Infrastructure and Asset Management Tel +351 918912610 patricio@uic.org

Stay in touch with UIC: in X O You Tube #UICrail

shop.uic.org



© NEXT TTI PROJECT

- >> Share your vision: we are still on time to suggest new topics.
- Boost innovation: turn it into an Opt-In 2027 project.
- Collaborate globally: join forces with IMs and RUs worldwide.
- Deadline: don't wait until the last minute, contribute now

POINT 6. ON GOING PROJECTS UPDATE

TTI ONGOING PROJECTS

2011	 Effects of instabilities on track resistance and fatigue 	(Y/Q)	
2016	 Harmonisation of track quality description and assessment 	(HARMOTRACK)	2024
2020	Crossing Effects Between Trains Assessment for INF and RS	(CROSS-T)	2025
2020	Aerodynamic noise production	(AERONOISE)	2025
2021	Railway dynamic measuring systems	(DYNMEASURE)	2025
2021	Clearance gauge common codification	(G-CODE)	2026
2024	Validation of measurements of wheel-rail contact forces	(CONFORCES)	2026
			Train-Track Interaction

TTI ONGOING PROJECTS

- ✓ P849 / CONFORCES project, which aim to validation of measurements of the Wheel-rail contact forces through instrumental wheelsets for UIC Leaflet 518 homologation purposes.
- ✓ P653/ AERONOISE project, which focuses on developing an improved noise emission measurement method for high-speed trains.
- ✓ P703/ DYNMEASURE project, which aims to identify the right framework for application of the various measuring systems trackside and on-board.
- ✓ P384/ HARMO-TRACK project, which aims to harmonise data formats and thresholds for track geometry and dynamic measurements.
- ✓ P652/ CROSS-T project aimed at ensuring safe train operations when crossing in mixed traffic lines.

P849 / CONFORCES

Objectives

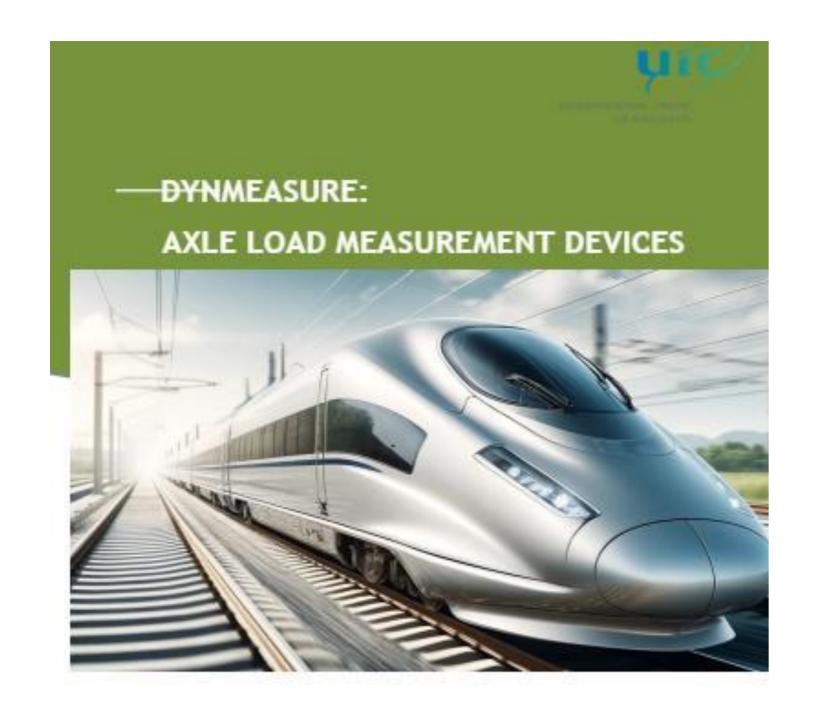
- Analysing and proposing guidelines for evaluating wheelset precision and its accuracy in running conditions
- Analysing and proposing guidelines for measurements of wheel-rail contact forces through instrumented wheelsets
- Describing an accepted method for measurement of wheel-rail contact forces through instrumented wheelsets that includes calibration

Scope

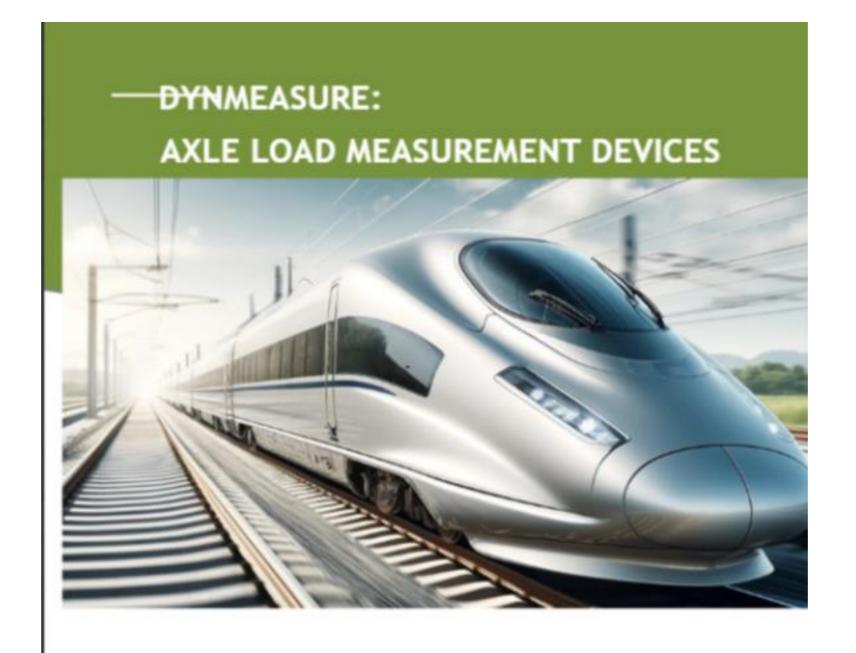
- Infrastructure Managers (IMs)
- Railway Undertakers (RUs)
- Rolling stock and vehicle validation instruments manufacturers
- Homologation bodies
- Technical Universities

P653/ AERONOISE

UIC project AERONOISE (P000653) - Measurement and analysis systems to characterize the aerodynamic noise of high-speed trains.


PROPOSAL FOR EXTENDED ACOUSTIC TEST
METHODOLOGY

P703/ DYNMEASURE

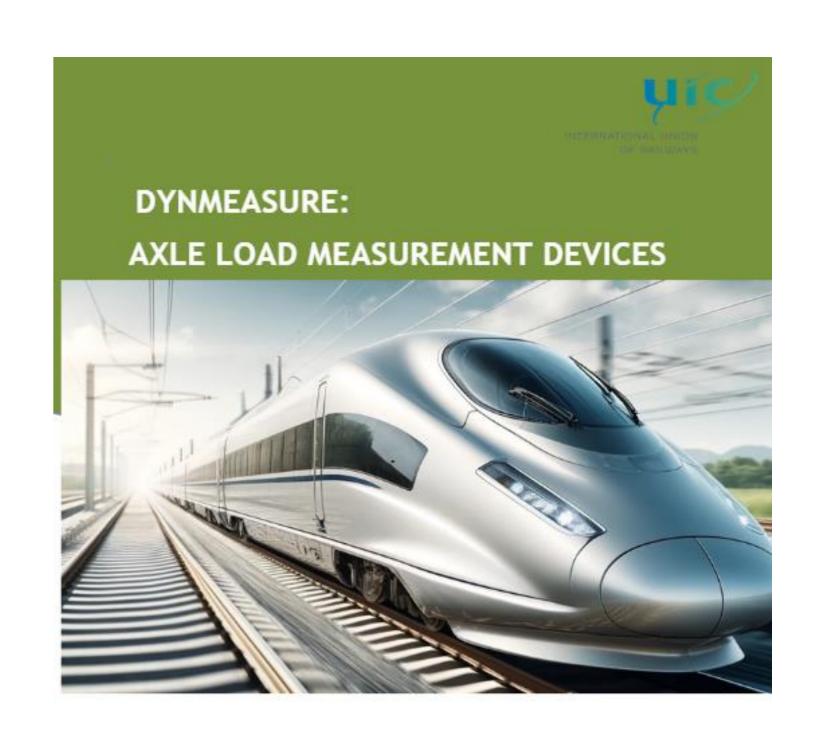


PHASE 1: TECHNOLOGY REVIEW

DRAFT -CC

୬⊕ sener

January 2025



PHASE 2: OPERATIONS, SAFETY, AND
MAINTENANCE STRATEGY

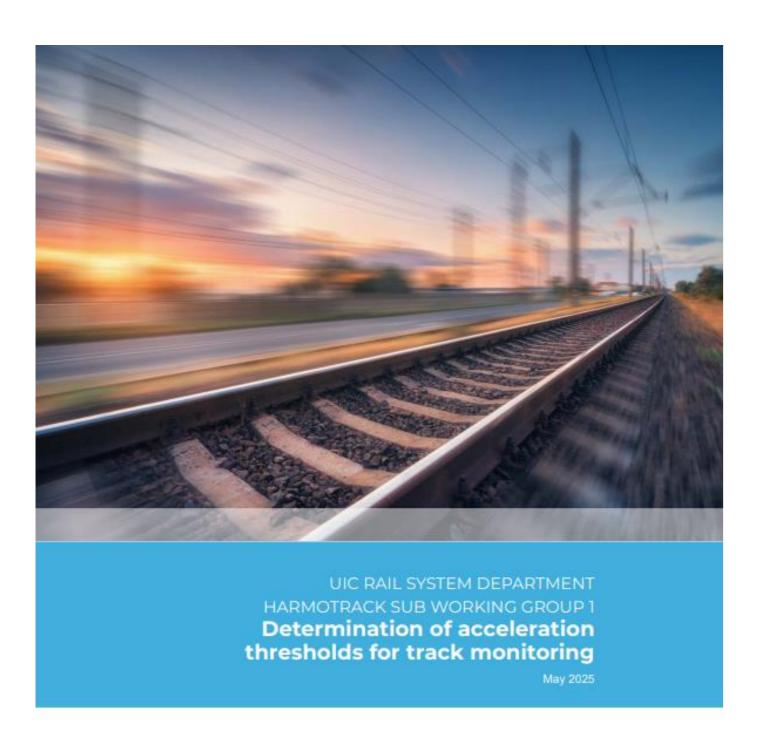
DRAFT -CC

® sener

June 2025

PHASE 3: COST-BENEFIT ANALYSIS

DRAFT -AA


ື sener

OCTOBER 2025

P384/ HARMO-TRACK

UIC Technical Report (March 2025)

SUB WORKING GROUP 2

Use of axle box acceleration measurements to detect and characterise short rail defects

UIC Technical report (April 2025)

SUB WORKING GROUP 3

Use of low-cost devices for measuring acceleration onboard trains

© International Union of Railways, 2025. All rights reserved.

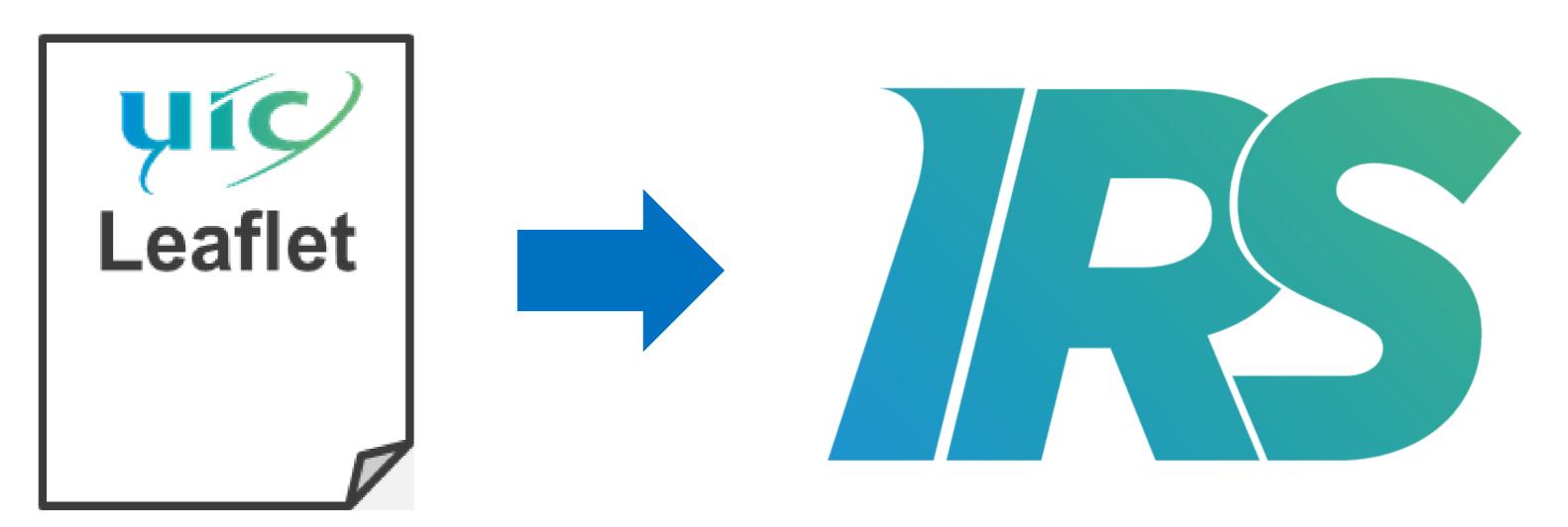
This document may not be reproduced – even in part – without the written authorisation of UIC.

© International Union of Railways, 2025. All rights reserved.

This document may not be reproduced – even in part – without the written authorisation of UIC.

CROSSing effects between Trains - CROSS-T Project

Terry Johnson
RSSB
18 September 2025



POINT 7. MIGRATIONS PLANS

- IRS are the evolution of UIC "Leaflets": voluntary documents that promote best practices, standards, and the harmonization of technical, operational, and maintenance aspects.
- It is mandatory to maintain the normative framework related to each railway sector.
- To this end, dedicated working groups will be set up to perform these tasks, namely updating existing regulations, developing new ones, and repealing outdated provisions.

UIC leaflets-IRS Migration plan

Leaflet No	Name	UIC Comments
505-4	Effects of the application of the kinematic gauges defined in the 505 series of leaflets on the positioning of structures in relation to the tracks and of the tracks in relation to each other	Partially copied in EN15273-3. Nothing to be added from our perspective
506	Rules governing application of the enlarged GA, GB, GB1, GB2, GC and GI3 gauges	Nothing to be added from our perspective. Unless members think the opposite, migrate as it is.
505-5	History, justification and commentaries on the elaboration and development of UIC leaflets of the series 505 and 506 on gauges	No amendment needed with regards to 2010
505-6	General rules for interoperable rolling stock gauges (without unloading freight or disembarking passengers) in cross-border traffic between UIC and OSJD Rus	Needs to be updated based on 50505-1
518	Testing and approval of railway vehicles from the point of view of their dynamic behaviour - Safety - Track fatigue - Ride quality	Will be reviewed as part of CONFORCES project
519	Method for determining the equivalent conicity	EN15302 has been transformed into technical report PD CEN/TR 17792:2022. Take advantage of this to review. No need of developing a project like EQUIVALENT CONICITY for this
779-1	Effect of the slipstream of passing trains on structures adjacent to the track	Not urgent action for PoSE
779-11	Determination of railway tunnel cross-sectional areas on the basis of aerodynamic considerations	Not urgent action for PoSE

POINT 8. AOB AND NEXT MEETING DATES

Next Face to Face meeting

Previous Plenary Meeting:

- Hosted by ADIF in Málaga
- 17 and 18 September 2025
- + 40 physical attendants

Next one → Open to candidates September or October 2026

Location to be decided

Our intention: not at UIC premises

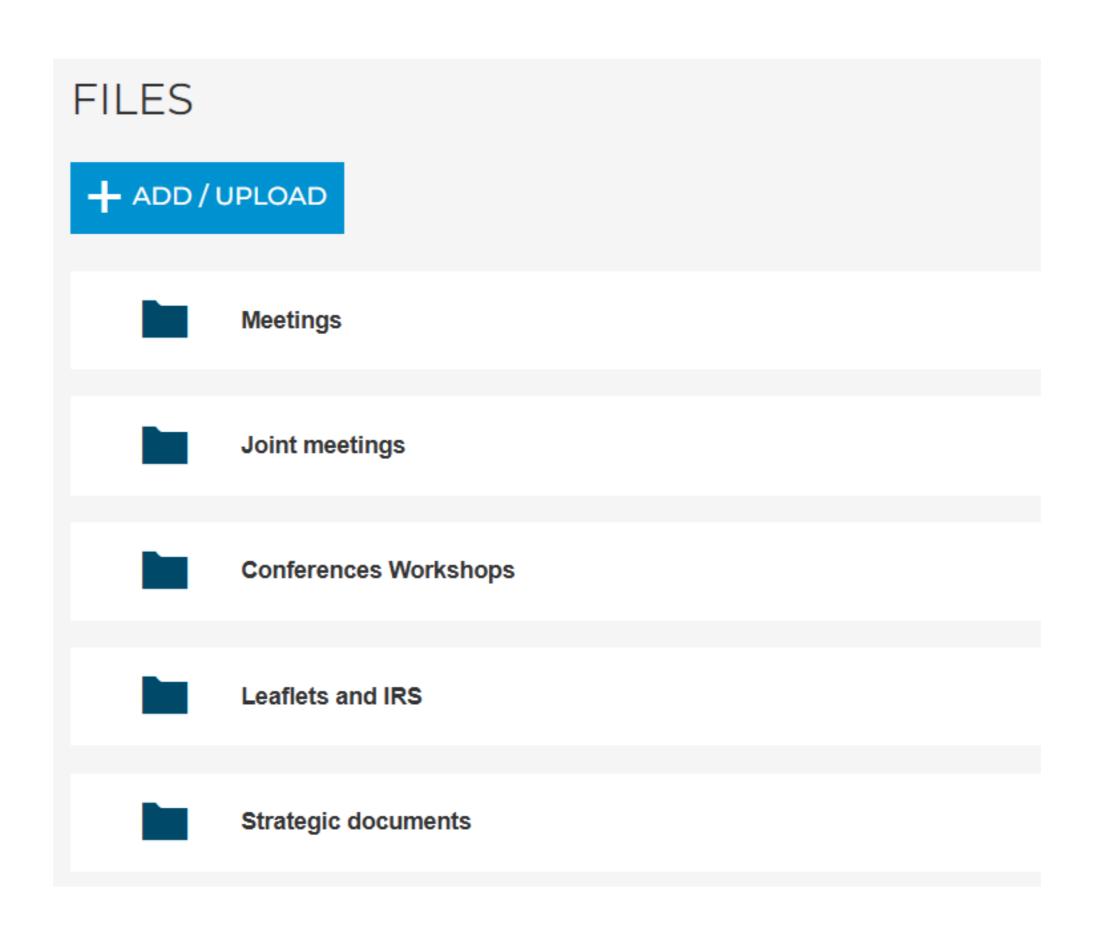
FINAL REMARKS AND CLOSURE

Thank you for your attention

CONTACT Jorge SUÁREZ Senior Infrastructure and TTI Advisor Tel +33 6 72 21 91 10 suarez@uic.org

Stay in touch with UIC: in X O You Tube #UICrail

shop.uic.org



UIC RSF General Information

Train-Track Interaction. https://extranet.uic.org

Approval of previous Plenary Meeting's Minutes

AGENDA/ MINUTES OF THE MEETING

Name of body concerned:

Interfaces and Interaction between Infrastructure subsystem and Rolling Stock (TTI) Sector

Meeting name:

TTI Sector Plenary Meeting

Date, time (from [hour] to [hour]):

13-14 March 2025, 12:00-12:00 (CET)

Location:

UIC HQ, Paris

Participants

Name	Abbreviation	Organisation
Onsite		
David Villalmanzo Resusta	DV	ADIF, TTI former Chairman
Anup Chalisey	AC	RSSB, TTI new Chairman
Rosa Deneb Casquero Soler	RC	UIC, TTI, Rail System Department
Jesús Palma Béjar	JB	UIC, TTI, Rail System Department
Gennaro Sica	GS	HS2
Danilo Sorrentino	DS	SNCF Réseau
Samuel Pelisson		SNCF Réseau
Online		
Alejandro Mendizábal	AM	ADIF
Mónica Pelegrín	MP	ADIF
Francisco Badea	FB	Universidad de Nebrija
Terry Johnson	TJ	RSSB
Martin Li	ML	Trafikverket
Mehdi Dib	MD	SNTF subsidiary
Andrea Collina	ACol	Politecnico de Milano
Manuel Tur	MT	Universidad Politécnica de Valencia
Hugo Patricio	HP	UIC, Infrastructure, Rail System Department
Alvaro López	AL	Rail Baltica
Jose Manuel Cabral	JC	SENER

All the presentations will be uploaded on the UIC Extranet.

Point 1. Welcome and general information

The session was opened by Jesús Palma, who gave the floor to DV, former TTI Chairman and just appointed Infrastructure Chairman. DV thanked the experts for the collaboration during the last years, offered his support to the new TTI Chairman and the whole sector and suggested cross-cutting collaborations between both sectors. AC, new TTI chairman, expressed his enthusiasm and eagerness to support TTI sector and remind that one of the key topics of the meeting was

