

### What are the railways/countries planning next?

#### Banedanmark/Denmark







# Roughness measurements in Banedanmark (BDK) – implications for efficient environmental noise reduction

- A mobile method for estimation of rail roughness level on a large scale, suitable for countrywide surveys
- Data provides useful data for track maintenance both in terms of environmental noise and rail quality
- Data is stored in BDK's track measurement database
- BDK has conducted a statistical analysis to see how roughness levels correlate to other types of rail control measurements
- BDK has developed a tool to rank track sections according to e.g. rail quality, traffic and population density to most effectively out from a socioeconomic perspective to reduce the amount of environmental noise from the track and to document the effect of noise reduction measures



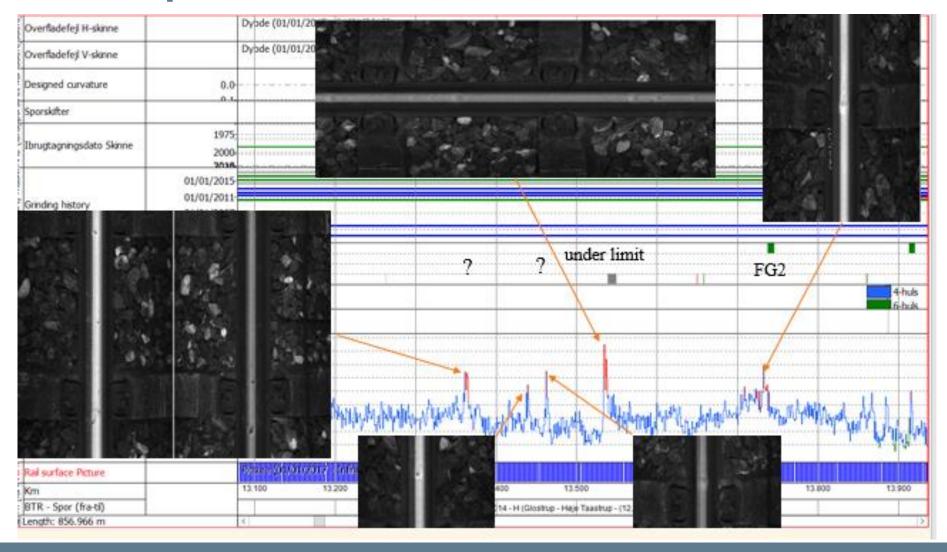


## Roughness measurements in BDK – implications for efficient track maintenance

- BDK has used the data on a case by case basis to:
  - identify previously undiscovered rail defects, including ones in an early stage of development
  - identify zones with bad rail surface quality
  - identify bad quality welds and isolation joints
  - plan, prioritize and assess the quality of large-scale maintenance works such as grinding and milling
  - complement and validate the information provided by other track measurement methods.
- Peaks in the roughness data shows to correlate well with the presence of defects, welds and isolation joints, and its magnitude seems to reflect the severity of the problem



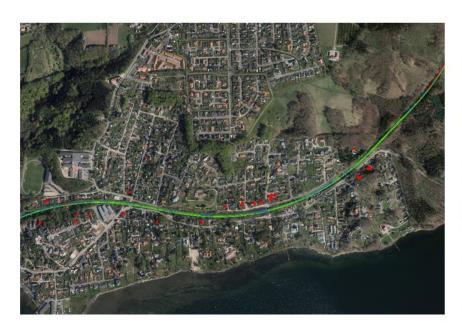


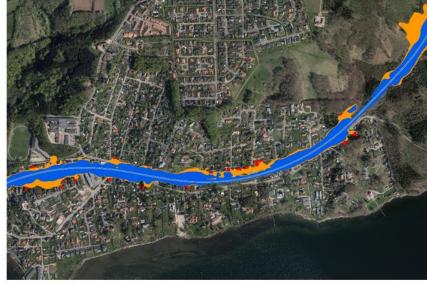

## Roughness measurements in BDK – implications for efficient track maintenance

- Likewise, high roughness levels over large lengths correlate with bad rail surface (including, but not limited to, corrugation), bad quality of maintenance (grinding and milling in particular) or a large time elapse since the last maintenance intervention.
- BDK has given the measurements a significant role in planning the large-scale maintenance operations of grinding and milling
- Future plans include ranking the quality of switches and crossings based on their surface roughness profile.






#### **Unreported rail defects**

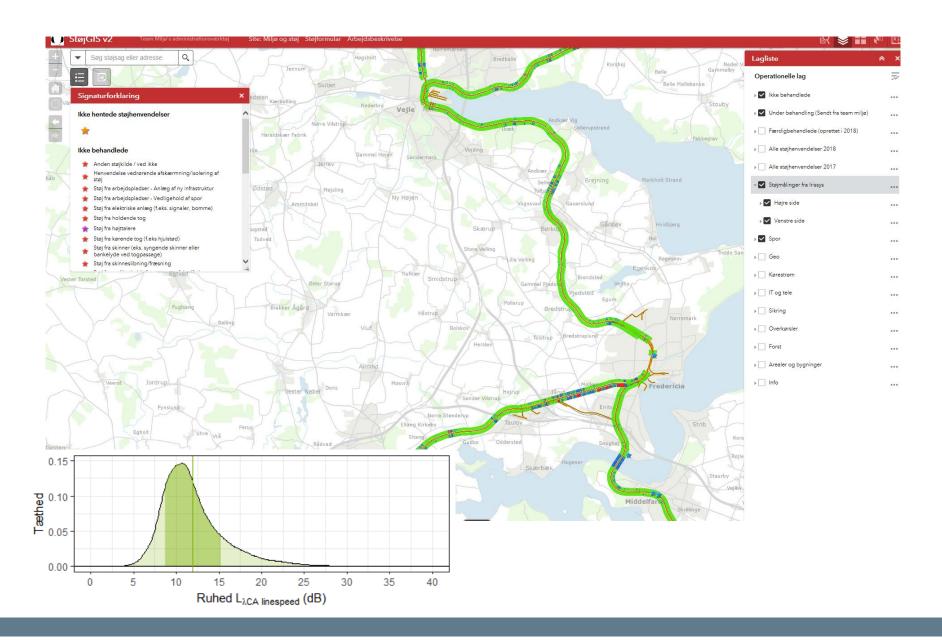







## Roughness measurements in BDK – EU noise mapping END






I eksemplet her fra Bredballe viser de nye målinger at der 37 % flere boliger end hidtil antaget, der er støjbelastede

De nye målinger gør at Banedanmark kan planlægge, prioritere og dokumentere indsatsen mod nabostøj langt mere effektivt end før













ruhed100m

[] - | 뢉 - | 🔓 🙌 🛛 🐠 🗶

| Г  | AVGF  | MAXR  | N5AVG | N1AVG | BTRSPOR           | M fra | M til | R avg | R max | T pers | T gods | T hast | R korr   | B dens | P avg   | P max | P econ |
|----|-------|-------|-------|-------|-------------------|-------|-------|-------|-------|--------|--------|--------|----------|--------|---------|-------|--------|
| Ш  | 16.13 | 26.79 | 2     | 1     | 102004-SPOR 1.hsp | 4200  | 4300  | 16,13 | 26,79 | 24,2   | 0,1    | 90     | 13,36254 | 375    | 2,97872 | 0     | 1120   |
| L  | 13.95 | 15.92 | 0     | 0     | 842016-SPOR H     | 16600 | 16700 | 13,95 | 15,92 | 19,1   | 0      | 100    | 12,52234 | 327    | 3,41463 | 0     | 1120   |
| IL | 11.38 | 14.26 | 0     | 0     | 012002-SPOR V     | 4000  | 4100  | 11,38 | 14,26 | 42,2   | 0,1    | 180    | 17,61133 | 573    | 3,48432 | 0     | 2000   |
| L  | 12.93 | 21.46 | 2     | 0     | 832006-SPOR H     | 6000  | 6100  | 12,93 | 21,46 | 24,5   | 0      | 120    | 13,87778 | 291    | 3,83561 | 0     | 1120   |
| IL | 13.43 | 22.72 | 2     | 0     | 842012-SPOR H     | 12200 | 12300 | 13,43 | 22,72 | 19,1   | 0      | 100    | 12,00234 | 278    | 4,01433 | 0     | 1120   |
| ш  | _     | 4     |       |       |                   |       |       |       | ,     |        |        |        |          |        | .,      |       |        |

6400 1120 12.02 | 15.79 0 0 | 832006-SPOR H 6500 12,02 15,79 24,5 0 | 120 | 12,96778 263 | 4,24242 13.84 16.55 0 0 842016-SPOR H 16800 16900 13,84 16,55 19.1 0 100 12,41234 258 4,32432 0 1120 13.73 17.07 0 0 | 012002-SPOR V 3900 4000 13,73 17,07 42.2 0,1 180 19,96133 547 4.37956 0 2400 2 102005-SPOR 2 90 12,75254 15.52 31.19 6 4809 4900 15,52 31,19 24,2 0,1 249 1120 4,48 1 11.79 14.16 0 0 104010-SPOR V 11900 12000 11.79 14.16 15.6 0.1 120 12,77361 249 4.48 0 1120 120 15,51778 2 14.57 24.35 0 | 833000-SPOR 2 6600 6700 14.57 24,35 24,5 0 333 4.49101 1500 42,2 180 17,98133 11.75 14.99 0 0 012002-SPOR H 3900 4000 11,75 14,99 0,1 524 4.57142 2400 120 14,42778 13.48 19.12 2 0 833000-SPOR 2 6500 6600 13,48 19,12 24,5 0 321 4,65838 0 1500 14.09 19.24 1 0 012002-SPOR V 3600 3700 14,09 19,24 42,2 0,1 180 20,32133 514 4,66019 0 2400 14.41 20.10 1 0 012002-SPOR V 3800 3900 14.41 20.1 42,2 0.1 180 20,64133 513 4.66926 0 2400 13.48 18.42 0 0 832006-SPOR H 5500 5600 13,48 18,42 24,5 0 120 14,42778 313 4,77707 0 1500 14 22 26 60 4 042000 CDOD H 100 12 00224 2020 4 00000 1120 44 22 20.00

14 - 4

ruhed100m