Institute of Railway Research

Railway research to support sustainable mobility

A Calculation Framework to Better
Understand & Estimate Services Loads
for Track Designers & Maintainers

RSSB projects T1073 + COF-UOH-59

Presentation to UIC TTI by

Prof Yann Bezin

17th Sept 2025, Malaga, Spain

Background on Track Loading Requirements

- Loading requirements for track system design and construction are defined in EN16432-1
 - But there is a lack of transparency and fundamental scientific validation, particularly concerning lateral track loading
- Guidance on lateral loads stems from limit values established to reduce the derailment risk (Nadal) and track buckling (Prud'Homme)
 - Highly conservative or unrepresentative when considering the wide range of loading conditions and track systems
 - Leading to either over engineered or inappropriate track design suffering short life cycles
- Could be more accurately categorised as a function of the type of application
 - e.g. vehicle type, operational speed, track layout and track form

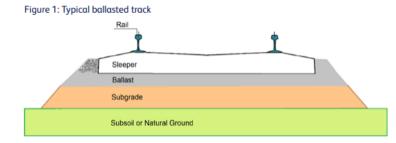
Background on RSSB Funded Research

University of HUDDERSFIELD
Institute of Railway Research

 RSSB commissioned a detailed piece of research (T1073) to define the requirements for the design of ballasted and non-ballasted track systems

2018-2019

- Provide guidance to enable track system designers to develop designs appropriate to the loads imposed by rolling stock and an appropriate maintenance strategy
- T1073 defined the requirements for vertical track loading, however, the work on lateral loading was not finalised


2020

 Co-funded COF-UOH-59 project was set out a for completing the lateral loading requirements

2021

T1073 Motivations

- The design of track systems is continually developing, using combinations of different materials, improved manufacturing processes and construction techniques
- Current practice for designers of new track is to use Load Model 71 (LM71/Eurocode) to determine loads on track support systems.
- This model was originally developed for bridge design, is usually applied to simply supported or continuous spans, with typical spans of 10m or less in GB. However, the design practice in GB for track renewals and upgrades is largely to use proven combinations of track components for ballasted track, based on many years of experience and practice.
- The application of structural design methods to the track system, due to the existence of a design load model, could change this practice over time, improving durability and decision making such as concerning sub-structure materials.

Rail

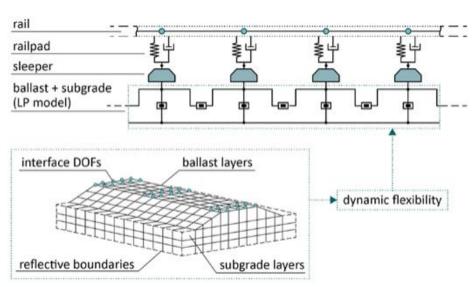
Elastic Rail Fastener

Self-Compacting concrete

Sleeper

Elastic Layer Reinforcement Reinforced Concrete Slab

Subgrade


Figure 2: Typical ballastless track

T1073 Motivations

- The aim was to **develop a design method**, considering the loads from specific train types (*from freight to HS*), operating at relevant speed ranges, on new or upgraded track systems. The stiffness of the subgrade was also considered.
- The findings is to help track designers and clients for track design work to achieve a more efficient design, that is both <u>fit for purpose</u> and <u>cost effective</u>.

T1073 Main Findings

University of HUDDERSFIELD

Institute of Railway Research

- The conclusions of the vertical load analysis are:
- LM71 load pattern: The 250 kN point loads are likely to be the most critical load on rail tracks supported on earthworks.
- Dynamic factor functions have been developed for each train type, track type, operating speed and soiltype. This provides a more realistic representation of the vertical track load variation with speed.
- Design functions for typical types of train, and for different subgrade stiffness categories (soft, medium and stiff), have been derived.

An example of the dynamic factors obtained for New HS Trains on a ballastless track, on soft, medium and stiff clay is shown.

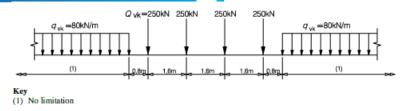
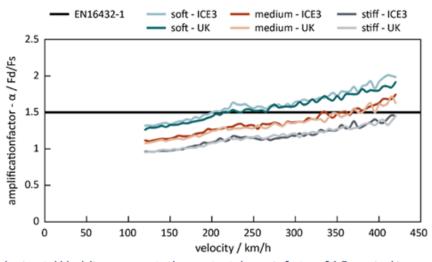



Figure 6.1 - Load Model 71 and characteristic values for vertical loads

The horizontal black line represents the constant dynamic factor of 1.5 required in EN16432-1 for all train types and track systems.

COF-UOH-59 project aims

 The research aimed to develop a framework which defines how lateral loads should be accounted for in track system design and its relationship to vertical loading

key objectives include:

- Improve the definition of track loading in the current EN16432-1
- Define a GB track load model that can then feedback into the EN standard definition
- Support on-going/future infrastructure projects, such as HS2

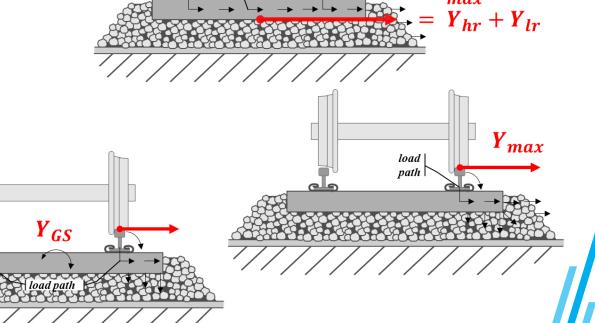
Lateral loading

COF-UOH-59

Review on lateral load limits

Institute of Railway Research

Parameter	Standard	Limit values	Comments						
Quasi-static lateral	UIC518	60 kN (R = 350 m)	$Y_{qst,lim} = (30+10500/Rm)$, up to $Y_{qst,lim} =$						
guiding force, Y _{qst}			112.5 kN						
	EN14363	60 kN							
	Lichtberger	5 – 20 kN (high-speed)	- Range of loads to be considered for						
		10 – 50 kN (mixed traffic)	new track designs						
Maximum lateral	GC/RT5021	100 kN	- Distributed over 2 m.						
force, Y _{max}	GM/RT2141	71 kN	- Equivalent theoretical P2 force (< 100						
			Hz), generated by Class 86/2 loco in a						
			curve over prescribed lateral ramp on						
			outer rail.						
	EN14363	80 – 110 kN	- No limit value is provided, but Annex J						
			provides guidance.						
	Lichtberger	65 kN (high-speed)	- Defines range of loads to be						
		91 kN (mixed traffic)	considered for new track designs						
Track lateral shifting	GM/RT2141	variable	K_1 (10+P ₀ /3), with P ₀ = wheelset force, K_1						
force, ∑Y _{max}		(e.g. 81 kN for class 86/2)	= 1 (loco/pass) or 0.85 (freight)						
	EN14363	variable							
Additional track loading parameters, without limit values									
Quasi-static resultant	EN14363	Y _{qst} + 0.83 * Q _{qst}	Quasi-static rail load parameter						
rail force, B _{qst}									
Maximum resultant	EN14363	(Y + 0.91 * Q _{max})	Maximum rail load parameter						
rail force, B _{max}									


Relevant lateral forces

Relevant lateral forces considered in the Framework

- 1. Track lateral shifting force (ΣY_{max})
- 2. Maximum Lateral Force (Y_{max})

3. Gauge spreading force (Y_{gs-max})

load path

 Y_{lr}

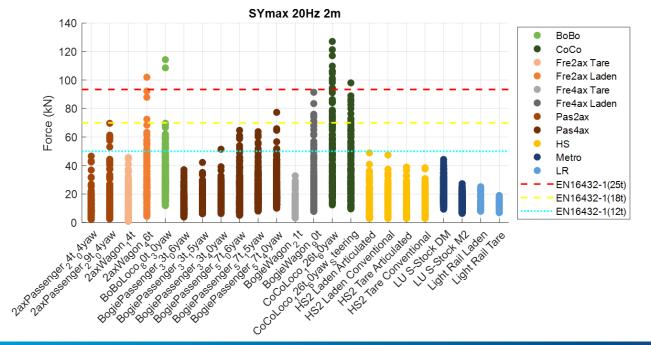
Derivation of track forces database using MBS outputs

Table 2: Summary table of input parameters used to derive lateral load limit values

Vehicle Type -	Passe	Passenger Freight		Lass	High	Metro/			
Input parameters	2-axles	4-axles	2-axles	4-axles	Loco	Speed	Light Rail		
Main parameter of influence: key driver of limit values:									
Curve radius (m)	80 – 10,000								
Medium influence: entire range accounted in deriving limit values:									
Max. speed (mph)	75	100	60	75	80 – 125	225	50 – 62		
Cant deficiency (mm)	0 – 1	150	0 – 110			0 –150	0-110		
Track Quality	NR - bands 5, 6 and 10					HS1 VTT	LUL – bands 1 to 3 NR - Tram-Train route		
Low or no influence: single representative value used to derive limit values:									
Rail type	56E1, 60E2				60E1	56E1, 55G1			
Wheel type	P8	3	P5	P10	P8	S1002	LT5, Mod-DIN		
Coefficient of friction	0.45 (worst case)								

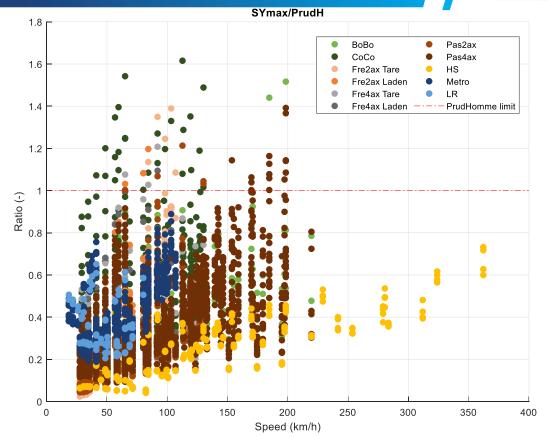
MBS simulations using Vampire® software

Influence parameters vs Assessment criteria



Parameter	Assessment Criteria				
	$\sum Y_{max}$	Ymax	Y_{gs}	Y_{bt}	
Vertical static/dynamic load (Q)	High	High	High	Medium	
Curvature	High	High	High	Medium	
Cant deficiency	High	High	High	Medium	
Track quality	Medium	Medium	Low	Medium	
Vehicle instability	Medium	Medium	Low	Low	
Short wavelength irregularities	Medium	High	Low	Low	
Rate of change of cant	Low	Low	Low	Low	
Wheel-rail profile	Low	Low	Low	Low	

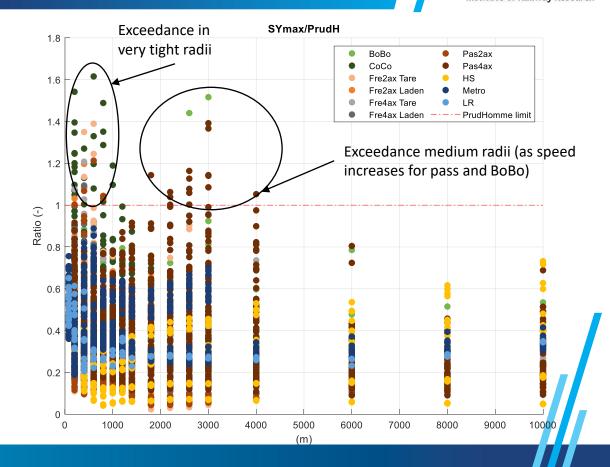
Comparison to limits values: vehicle type


- General over or under-estimation vs existing limit values are observed.
- Vehicle type and axle load obviously is a primary factor for track loading

University of HUDDERSFIELD

Institute of Railway Research

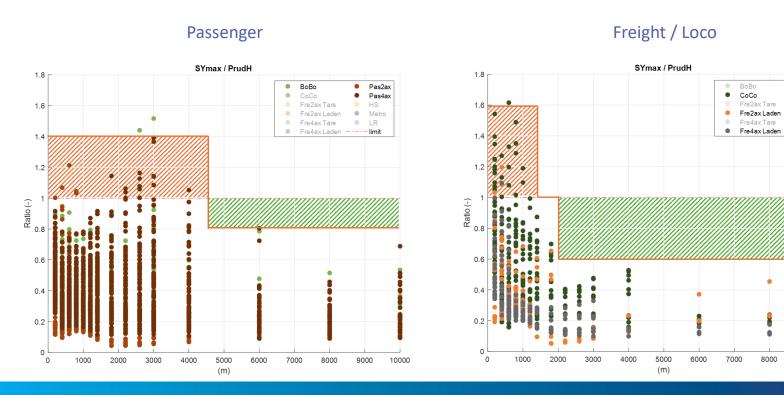
- Ratio (ΣΥ_{max} / Prud'H limit) vs speed
- Large exceedance for certain vehicle types at low/medium speeds
- But also not as linearly dependent on speed as for vertical loads
- Other factors have a greater influence



Comparison to limits values: curve radii

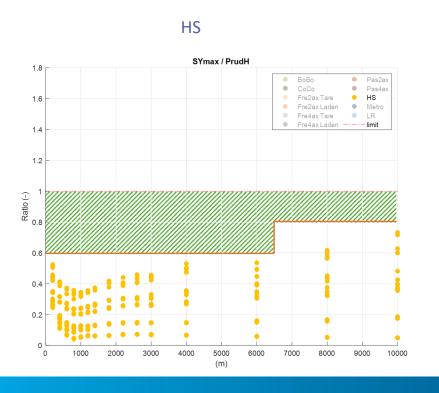
 Ratio (ΣΥ_{max} / Prud'H limit) vs radii

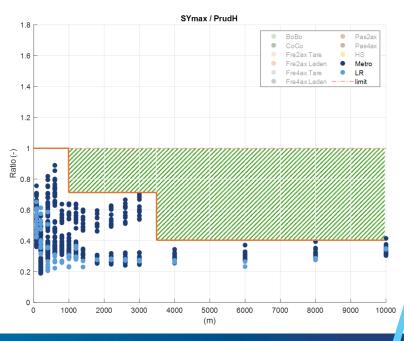
- Large exceedance in tights radii
- Also exceedance in medium large radii for passenger traffic running at high cant deficiency
- Generally low values in large radii to straight track.


Comparison to limits values: curve radii

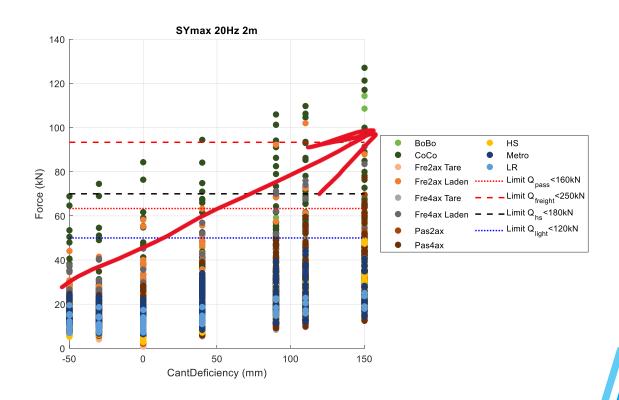
9000

10000


• Areas of over design specification and areas of under design specifications

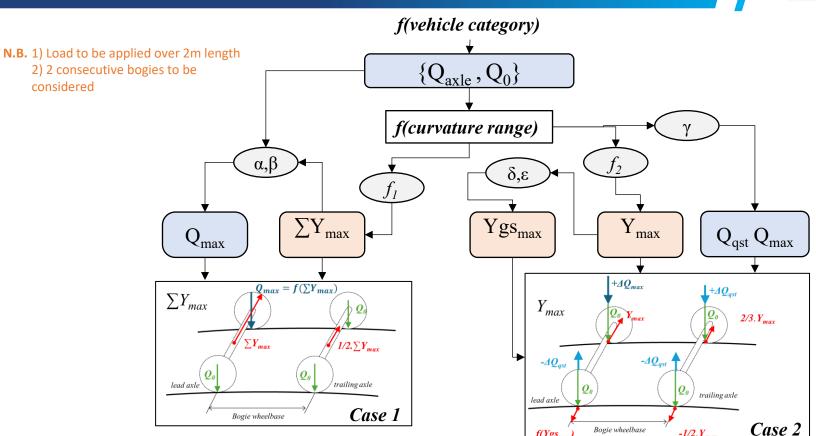

Comparison to limits values: curve radii

Mostly over design specification


tram / light rail

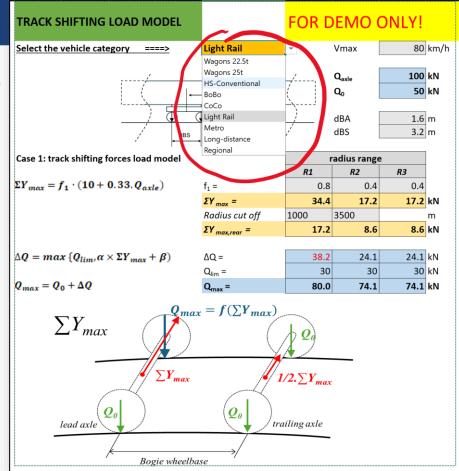
Comparison to limits values: cant deficiency

University of HUDDERSFIELD
Institute of Railway Research


 Significant increase of ∑Y_{max} with increasing cd for all vehicle types

Proposal for a loading framework

Proposed framework



f(Ygsmax

 $-1/2.Y_{max}$

Proposed framework

Demo calculation spreadsheet (link)

University of HUDDERSFIELD

Institute of Railway Research

Conclusions

- Current Vertical loads factors are over simplified and should account for vehicle speed and track stiffness
- Lateral loads are more complicated and should account for additional factors such as vehicle type, track layout, track type and operational cant deficiency. Vertical and lateral loads are also interlinked.
- For track design purposes the major type of lateral loading criteria are track shifting $\sum Y_{max}$, rail loading Y_{max} and gauge spreading force $Y_{GS,max}$
- Current limits used in relevant standards (e.g Prud'Homme) can grossly overestimate the expected forces for most vehicles, except for heavy freight and locomotive, and under predict in tight radii for the same vehicle category. This justifies the need for new and variable limit values.
- A simple calculation **framework** is proposed for track design purposes considering <u>combinations of Y and Q load cases</u> and proposes a systematic way of deriving <u>their limit values</u>.
- This will also help **better track maintenance** for IMs supporting better maintenance **planning models** to be developed

Further work and next stage

Draft framework presentation to industry stakeholders and opened for consultation:

Via the GB CEN16432 mirror working group BSI RAE/2/-/8.

Areas that have to be considered for further work are:

- vehicle **instability** and generated additional lateral loads (quantification of additional factor and estimate of likely risk as a function of operational type)
- investigate **track load distribution** based on a wider variety of track design and formation to understand links between WRI loads and strains in the various track components/levels.
- investigation of high loads generated from CoCo locomotives, noting that these vehicles are infrequent
- consideration for **higher frequency dynamic loads** here all low pass filtered <20Hz with 2m sliding mean. There are increased dynamic factors for short wavelength track input (e.g. joint, welds, S&C, corrugations) and wheel OoR/flats.
- Potential laboratory testing to verify track lateral resistance to established limits

References

- B. Lichtberger, "Track compendium," Eurailpress Tetzlaff-Hestra GmbH Co. KG, Hambg., vol. 634, 2005.
- EN14363:2016+A1:2018, "Railway applications Testing and Simulation for the acceptance of running characteristics of railway vehicles Running Behaviour and stationary tests"
- EN16432-1:2017, "Railway applications Ballastless track systems Part 1: General requirements".
- GMRT2141 Issue 4.1, "Permissible Track Forces and Resistance to Derailment and Roll-Over of Railway Vehicles".
- GCRT5021 Issue 6, "Track System Requirements", issued 2/12/2023.
- RSSB Project T1073, "Loading requirements for track systems (T1073) Analysis and guidance on vertical track loading requirements for track designers", 2020.
- RSSB project COF-UOH-59, "Loading requirement for tracks systems lateral loading (COF-UOH-59), 2023.

