

CompamedZNA

COMPARISON OF WEED CONTROL METHODS USED TO MANAGE NON-CROP AREAS

ÉCOPHYTO REDURE ET AMÉLIORES COMPARED ZNA

THE PROJECT

⇒ 4 years (2010-2014)

Scope of the study: curative weed management practices

- ⇒ Weed management practices and their costs in non-crop areas
- Experimental assessment of weed control methods
- ⇒ Environmental assessment (LCA) of weed control methods

Project outputs

- ⇒ Summary document
- ⇒ Self assessment tool of weed management practices

➔ Methods:

ÉCOPHYTO RÉDUIRE ET AMÉLIORER L'UTILISATION DES PHYTOS CompamedZNA

Impact indicators:

Energy consumption (non renewable)

Water consumption

Climate change (potential)

Photochemical Ozone Creation (potential)

Eutrophisation (potential)

Aquatic ecotoxicity (potential)

Ozone (layer) depletion (potential)

Resources (depletion) (potential)

Acidification (potential)

Human toxicity (potential)

Impermeable surface – Least severe control

Interpretation :

- Hoe is the method with the lowest impact.
- Chemical methods have the highest impact on 'aquatic ecotoxicity'.
- Using optical detection sprayer rather than other chemical methods limits environmental impact
- Hot Water, Steam and Flame methods have the highest impact on all of environmental indicators , except on 'aquatic ecotoxicity'.
- Overall, Hot Water has the highest negative impact of all the methods studied, especially on impermeable surface.
- Overall, mechanical methods (Brush and Rotay Harrow) have low impact.
- Nevertheless, there is a significant impact of Brush on 'resources' due to wear on metallic strands.

ANALYSIS OF THE CONTRIBUTION

Use of the equipment / Wear on PPE / Fuel consumption during weed control / Use of consumables during weed contol / Transport to site

Interpretation :

- Use of the equipment is most of the time the major contributor (chemical products, water, gas, diesel, brush).
- Wear on PPE can contribute significantly to the impact (for example for Hoe).
- Equipment (manufacturing and delivery) contribute significantly to the impact (at least 10% of the total impact).
- Transport to site (10 km round trip) contributes little to the environmental impact of weed control given the average size of the controlled sites

➔ Conclusion:

The environmental issues are very different by nature for chemical vs alternative methods :

 Local impacts (ecotoxicity) vs. overall impacts (resources, GHG, ...)

The two parameters « yield » and « number of rounds » are the most sensible parameters.

The best way to reduce the environmental impact of weed control in non-crop areas is to weed less often :

- Weeds tolerance by public (and so decision makers).
- No weed control into some specific area
- Transition from a systematic control to a moderate and sustainable weed control.

 \rightarrow Factsheets

→ Self assessment tool

SELF ASSESSMENT TOOL

Companded Autor des pratiques de désherbage Outil d'évaluation des pratiques de désherbage Impact environnemental potentiel Evaluation du coût

- To build your own scenarios
- → **To assess** your own scenarios or hypothetical examples
- **To compare** your own scenarios or hypothetical examples

SELF ASSESSMENT TOOL – BUILDING A WEED CONTROL SCENARIO

CompamedZNA

ÉCOPHYTO RÉDUIRE ET AMÉLIORER L'UTILISATION DES PHYTOS

Vous pouvez ici ajouter des interventions en cliquant sur les boutons 😳 de chaque mois :

Janvier	0	Février	0	Mars	0	Avril 🗧	Ð	Mai	Ο	Juin	0
						Semaine 14 Temps : 1h20mn		Semaine 18 Temps : 1h00mn			
Juillet	0	Août	0	Septembre	0	Octobre 🗧	D	Novembre	0	Décembre	0

ÉCOPHYTO REDURE TO A ES PHYTOS CompamedZNA

SELF ASSESSMENT TOOL – CALCULATION OF POTENTIAL ENVIRONMENTAL IMPACTS

Valeurs d'impact calculées pour le scénario Test sur son cycle de vie pour l'année 2013

Indicateurs	Transport	EPI	Matériel	Consommation
Toxicité humaine, cancer (CTUh)	3.54e-9	1.56e-10	2.49e-9	7.21e-10
Toxicité humaine, autres (CTUh)	2.43e-10	2.08e-10	2.02e-8	1.20e-9
Ecotoxicité des milieux aquatiques (CTUe)	2.74e-2	2.06e-2	9.60e-2	5.99e+0
Changement climatique (kg CO2 eq)	1.62e+1	3.09e+0	2.56e+1	8.27e+1
Disparition de la couche d'ozone (kg CFC eq)	2.40e-6	1.92e-7	1.96e-6	1.02e-5
Oxydation photochimique (kg NMVOC)	1.06e-1	5.96e-3	8.61e-2	1.03e+0
Acidification atmosphérique (molC H+ eq)	8.74e-2	8.49e-3	1.38e-1	8.12e-1
Eutrophisation (kg P eq)	6.43e-4	7.04e-4	1.92e-2	4.35e-3
Consommation d'eau (m3)	2.68e-3	2.31e-3	4.82e-2	3.47e-1
Epuisement des ressources (kg Sb eq)	7.70e-6	1.18e-5	2.56e-3	4.66e-5
Consommation d'énergie non renouvelable (éq MJ)	2.33e+2	3.23e+1	4.26e+2	1.23e+3

Notation scientifique : 1.00e+3 = 1.00x10³ = 1000 ; 1.00e-3 = 1.00⁻³ = 0.001

SELF ASSESSMENT TOOL – COMPARISON OF ENVIRONMENTAL IMPACTS

ÉCOPHYTO

RÉDUIRE ET AMÉLIORER L'UTILISATION DES PHYTOS CompamedZNA

📕 Pulvé. à détection + Binette 🔳 Pulvé. cadre + Flamme directe

Valeurs d'impact calculées pour les scénarios sélectionnés

Indicateurs \ Scénarios	Pulvé. à détection + Binette	Pulvé. cadre + Flamme directe
Toxicité humaine, cancer (CTUh)	7.90e-10	4.36e-9
Toxicité humaine, autres (CTUh)	2.69e-9	2.13e-9
Ecotoxicité des milieux aquatiques (CTUe)	9.76e+0	1.24e+1
Changement climatique (kg CO2 eq)	2.56e+1	3.61e+1
Disparition de la couche d'ozone (kg CFC eq)	3.19e-6	3.63e-6
Oxydation photochimique (kg NMVOC)	2.33e-1	1.57e-1
Acidification atmosphérique (molC H+ eq)	1.94e-1	1.51e-1
Eutrophisation (kg P eq)	5.10e-3	4.75e-3
Consommation d'eau (m3)	9.24e-3	1.68e-2
Epuisement des ressources (kg Sb eq)	4.26e-4	2.83e-5
Consommation d'énergie non renouvelable (éq MJ)	3.68e+2	4.41e+2

Notation scientifique : 1.00e+3 = 1.00x10³ = 1000 ; 1.00e-3 = 1.00⁻³ = 0.001

SELF ASSESSMENT TOOL – COST ASSESSMENT

- → To build a weed control scenario
- → To quantify expenditures
- → To calculate total cost of the scenario

Risk assessment of weed control methods on workers health

WEED CONTROL STUDY OF RISKS AND WORK ORGANISATION RECOMMENDATIONS

A MULTIDISCIPLINARY APPROACH

3 levels investigated

Work planning

HEALTH AND SAFETY Deliverables

An appendix for each risk factor (noise, vibrations, ...)

- Definition, health impacts, statutory limits, methods, results, recommendations
- A factsheet on 'noise, vibrations, dust, exhaust gas'
- ✓ General recommandations for when you are exposed to those risk factors (non exhaustive)
- A factsheet for each weed control method
- ✓ Hazardous conditions and recommendations (non exhaustive)
- Those documents could be used to :
 - Help to draw up the 'professionnal risk assessment document',
 - Take prevention measures,
 - Choose a new equipment.

ERGONOMICS

ÉCOPHYTO

RÉDUIRE ET AMÉLIORER L'UTILISATION DES PHYTOS

Deliverables

CompamedSanté

- 3 factsheets about work planning :
 - Creation and allocation of work orders
 - Team scheduling
 - Communication
- A web application : <u>Weed control management and</u> occupational health

ÉCOPHYTO RÉQUIRE ET AMÉLIQUES TUTILISATION DES MATTOS

A WEBSITE www.compamed.fr

Reports, reviews **Factsheets Toolkit**

WEBSITE AND SELF ASSESSMENT TOOLS WWW.COMPAMED.FR