### UIC IRS 90940 – SFERA Project Stakeholder Workshop, 05/11/2018

**Poster Presentations:** 

- Overview of SFERA and relation with ATO
- Core Use Cases
- Advanced Use Cases:
  - Power Management
  - Degraded Adhesion
- Message structure
- Communications
- Proof of Concept



## Overview And Relation with ATO



Henk Tijssen - ProRail **Thomas Sutter** – SBB Infrastructure IRS 90940 (Project SFERA) Stakeholder Workshop, Paris 05/11/2018

#### Who we are.





 Henk Tijssen ICT Architect, CIO Office ProRail

• Thomas Sutter **Corporate Development Operations** SBB Infrastructure



### What is the SFERA Objective?



management. ✓In a multi RU environment. ✓ Cross IM border. ✓ On ERTMS Lines.

#### Standardize DAS data exchange between on-board and traffic

#### This means, the SFERA standard must be applicable:

- ✓ On Legacy Class B ATP lines.



# We realised that data requirements for ATO and DAS are very similar.



| ATO over ETCS | Train Data<br>Route Data<br>Timetable Data | ATO   | Automatic Driving |
|---------------|--------------------------------------------|-------|-------------------|
| DAS           | Train Data<br>Route Data<br>Timetable Data | C-DAS | Driving Advice    |









| ata                 | ETCS  |                   |  |
|---------------------|-------|-------------------|--|
| Data<br>Data        | ATO   | Automatic Driving |  |
| ata<br>Data<br>Data | C-DAS | Driving Advice    |  |









#### Introduction to the Poster.

#### In addition to the DAS-Concept, our poster covers:



Similarities between ATO o. ETCS and C-DAS.

Differences between ATO o. ETCS and C-DAS.

Data requirements for C-DAS.

Advantages our IRS 90940 approach brings.



### Introduction to the Poster **IRS 90940 GENERAL OVERVIEW AND RELATION TO ATO OVER ETCS**



IRS 90940 Objective :

Standardize DAS data exchange between onboard and traffic management

This means:



In a multi-RU environment



Cross IM boarder



On Legacy Class B ATP lines









ensures one single set of data to support ATO and DAS for all RU's



### Key Takeaways: What You Really Need to Know.



- be compatible.

 The data requirements for ATO and DAS are very similar and the respective standards should therefore

 Because DAS does not have a connection to ETCS, Infrastructure Mangers must provide additional data from traffic management systems.

• The IRS 90940 ensures one single set of data to support ATO on Class B ATP lines and C-DAS for all Railway Undertakings.



# SFERA: Core Use Cases



Sébastien Dislaire – TMS Functional Specification, SNCF Réseau **Daniele Arena –** Consultant, UIC IRS 90940 (Project SFERA) Stakeholder Workshop, Paris 05/11/2018

#### Who we are



• Sébastien Dislaire



- Daniele Arena
  - Consultant, UIC

• TMS Functional Specification, SNCF Réseau









#### S-DAS + C-DAS Initialization



border).

#### C-DAS operational use cases

# SFERA Core Use Cases – Detail Detailed use cases have been developed for each part of the process





### Key Takeaways: What You Really Need to Know

- Initial setup
  - It is the same for S-DAS and C-DAS

    - DAS requests Train Characteristics and Segment Profiles not in memory
  - It is possible for the driver to change some parameters
    - Train type / composition
    - Declare that some train functions are degraded
- C-DAS operation
  - SFERA considers on-board and trackside triggers
    - On-board triggers can cause a direct reaction by the DAS
    - Trackside triggers can be from TMS or other systems
  - All triggers can generate
    - A recalculation of the Journey Profile
    - Communication between ground and board to transmit the journey profile
  - DAS can notify ground that it cannot respect the timing points

DAS initiates handshake with TMS upon startup, which results in TMS sending the Journey Profile



# Use Case Power Management



Markus Halder – SBB Energy Bart Van der Spiegel – Infrabel Niklas Biedermann - Trafikverket IRS 90940 (Project SFERA) Stakeholder Workshop, Paris 05/11/2018



#### Who we are





- Markus Halder
  - Swiss Federal Railways, SBB Energy
  - Head power demand management program
- Bart Van der Spiegel
  - Infrabel
  - Expert Energy Management



- Niklas Biedermann
  - Trafikverket
  - Expert Power System Design

ement program



1 day in Zurich city (50 Hz)





#### 1 day at SBB (16.7 Hz)



- Dynamic power profile of railways is challenging and expensive.
- Connection from ground to train offers opportunities to centrally influence power offtake.
- Benefits:
  - Reduction of investment costs for new power supply
  - Additional options in critical grid situations (Business Continuity Management)
  - Less backup power to be provided



ower supply ons (Business Continuity Management)



- Commuter train converter station:
   Factor 6 between median and peak value
- Info to the drivers degraded power supply
- Comparison between two Tuesdays
- Train: Coradia Nordic, Pmax=5,6 MW
- Measurement right line current for a single train
- Simulations show reduction of more than 50 % without affection to the timetable







### Introduction to the Poster

#### WHY?

- Reducing costs for electricity production or purchase by reducing power peaks In case of failure of a critical component or thermal alarms, power offtake is limited Increase capacity of tracks by optimising the usage of available power

- Optimise exchange of regenerative energy
- Use thermal and kinetic inertia of railways to support stability in European electricity transmission grid

#### WHAT?

Adjust power consumption of trains to available power on location and time 

#### REMARKS

- Reasons/benefits depend on railway power supply system It might be that part of regenerative energy is still lost in rheostats.











### Key Takeaways: What You Really Need to Know

- The connection from ground to train offers opportunities for system optimisation
  - > Cost savings on infrastructure side by influencing power offtake on trains.
  - system.
- this opportunities.
- Challenges and opportunities vary dependent on railway power supply system (AC, DC, own production or purchase,...).

Continues availability of electric power is not for free. It influences railway production costs.

> Enhancement of the robustness / reliability of the railway power supply system and in consequence the railway

SFERA defines the needed interfaces between ground and train enabling in the future profit from



# Use Case Degraded Adhesion



Didier Boulanger – SNCF Mobilités Bart Van der Spiegel - INFRABEL IRS 90940 (Project SFERA) Stakeholder Workshop, Paris 05/11/2018

#### Who we are



- Didier Boulanger
  - SNCF Mobilités
  - Head of DAS project & train driving expert



- Bart Van der Spiegel
  - Infrabel
  - Expert Energy Management





The degraded adhesion has a strong impact on the reliability of the train routing and scheduling.

The drivers have a direct perception of the state of the rail.

A live information allows to recalculate for the train but also to anticipate the vehicule routing and scheduling.



### Introduction to the Poster

#### The driver can indicate at any time during the driving a zone where the adhesion is particularly degraded







#### Introduction to the Poster

### 

### **DEGRADED ADHESION USE CASE**

#### WHY?

- In case of low adhesion, trains will need more time to accelerate and to brake
- The theoretical schedule can not be respected
- DAS needs this information to calculate the optimal trajectory

#### WHAT?

- Driver can indicate better or worse adhesion conditions
- Information is transmitted to Traffic Management (TMS)
- Traffic Management informs all trains on expected lower adhesion conditions on parts of the infrastructure

#### **BENEFITS**

- Anticipate the organization of the scheduling.
- Protect the rolling stock

#### REMARKS

• With built-in DAS the feedback can be given automatically from train towards DAS.





### Key Takeaways: What You Really Need to Know

- Climate-related events often have an impact on the reliability of the vehicle routing and scheduling
- A consideration of the degraded adhesion allows to anticipate and to adapt the vehicle routing and scheduling
- An adapted vehicle routing and scheduling limits the degradation of the rolling stock and infrastructure
- The early information of the customers is always better perceived



# IRS 90940 Message Structure



Harm Jonker, Tibor Weidner, Alain Wenmaekers IRS 90940 (Project SFERA) Stakeholder Workshop, Paris 05/11/2018



#### Who we are



Harm Jonker 

Nederlandse Spoorwegen IT department for supporting operations staff Solutions architect mobile



**Tibor Weidner** DB Netz AG Algorithms specialist for traffic management and connected DAS



**Alain Wenmaekers** Infrabel ICT Traffic Management Analytics

Business analyst for the domains Train planning, Simulation and



#### The poster

#### Look for this poster to find us



#### **TrainCharacteristics**

- ID
- Version
- RU-ID
- Rolling stock type
- Engine power Train ATP-system
- Traction force curve
- Braking force curve
- Maximum regenerative force/braking
- Comfortable acceleration/braking
- Braking/Traction reaction time
- Train length Train weight
- Train max speed
- Rollout coefficients
- Rotating mass factor

Optional data elements

#### **Common Header**

SFERA XSD-Schema Draft-Version 0.3

#### **SFERA MESSAGE STRUCTURE**











### Purpose of the message structure

- The SFERA messages are
  - Flexible
  - Extensible
  - Interoperable Use of XML (instead of binary formats)
- Structure that is compatible with ATO Over ETCS Subset 126
  - Subset 126 messages can be expressed in SFERA
- Avoid using mandatory parts
  - Not all IMs and RUs are able to deliver full datasets
  - Target on the minimum what is needed to operate a (connected) DAS
- Train point of view
  - Concentrate on the events a train run will encounter



### Message flows

- Two types of messages
  - Ground-to-Board: used to communicate data from the TMS to the onboard DAS
  - Board-to-Ground: used to communicate status and conditions information from the onboard DAS to the TMS
- Two communication patterns
  - Request/Response based: for data on demand use cases
  - Event based: actively publish changes to interested systems





### Ground-to-board structure



Ground-to-board messages are based on Subset 126 information

#### Time table

#### **Journey Profile**

- highly variable
- many updates to adjust train movements to current traffic situation

#### **Segment Profile**

- pretty static structure
- same for many train journeys



### Ground-to-board example

look like this:



#### A complete journey for a trip from one country to the neighbouring country could



### Board-to-ground messages

use cases defined in the working group

Currently foreseen:

- Position and speed
- DAS status change
- Change of adhesion conditions
- Expected energy consumption
- Train cannot respect time window

## Board-to-ground messages serve to give status or feedback to TMS according to



### Progress of Message Structure definitions

- Ground-to-board messages: stable, nearly final
- Board-to-ground messages: need additional input and finalisation



## Communications **Challenges and Solutions**



Bart van der Spiegel – Infrabel Christophe Tassin – SNCB / NMBS Jan Hoogenraad – NS /Spoorgloren IRS 90940 (Project SFERA) Stakeholder Workshop, Paris 05/11/2018



### Who we are







 Jan Hoogenraad Consultant NS /Spoorgloren

 Christophe Tassin Engineer Energy Efficiency and Innovation SNCB / NMBS

• Bart Van der Spiegel Expert Energy Management Infrabel



### What is difficult on SFERA communication protocols ?



- We start with a working S-DAS SFERA protocol Communication to train is easy: fire and forget Communication IM-RU needs to be compatible as well
- For C-DAS, we need a compatible protocol which is: Secure,
  - Reliable, and Interoperable,
- Bidirectional communication. Compatible with DAS and ATO.





### How did we implement SFERA communication protocols ?

- Data layer independent of content and S-DAS or C-DAS or ATO
- Three different supported communication architectures.
  - **BACK OFFICE TO BACK OFFICE**
  - **USING ATO OVER ETCS**
  - **DIRECT COMMUNICATION**
- Two architectures well defined, one under construction.







#### Introduction to the Poster.

- Our poster covers
  - The 3 architectures
  - The benefits of each architecture
- Come and discuss the different architectures with us

#### WHY?

- Secure reliable and interoperable bidirectional communication.
- Compatible with DAS and ATO.

#### WHAT?

- Data layer independent of content.
- Three different supported communication architectures.
- Two architectures well defined, one under construction.

#### BENEFITS

- SFERA extends ATO over ETCS beyond Baseline 3+ Full Supervision and remains compatible.
- Same IM server can be used for the three architectures.
- Architecture can be chosen based on preference of RU.

#### REMARKS

 All three communications can be used for DAS and ATO.

### **COMMUNICATION**

#### **BACK OFFICE TO BACK OFFICE**



between IM and RU.

train guaranteed by RU.

and data feeds of RU.

service by third party.

• Integrates with existing devices

• On ground IM-RU link (with high

Easy to reach good performance.

• Applicable to class B trains and

#### WHAT?

- Back office communication Communication via ATO-TS (according to ATO over ETCS Communication with device on standards).
  - With trains and lines equipped with ETCS Baseline 3+ Full Supervision.

**USING ATO OVER ETCS** 

IM2 ATO-TS

SFERA

IM2 SERVER

#### **BENEFITS**?

· 米· IM1 АТО-ТS

SFERA

IM1 SERVER

- Performance guaranteed by ETCS.
- Same SFERA dataset usable for trackside data preparation.

#### REMARKS

SFERA can be translated to the binary Subset 126.

#### WHAT?

protocol

SFERA

· \* IM1 DAS-TS

 Device on train communicates with IM responsible for area where train is running.

DAS-OB

#### **BENEFITS**?

- No ground RU-servers needed.
- Public communication infrastructure may be used.
- Applicable to class B trains and lines.

#### REMARKS

- Not identified yet.
- Challenging in keeping interoperability.
- Implementation can be different for handheld and built-in device.

#### lines.

WHAT?

**BENEFITS**?

reliability).

•

#### REMARKS • RU Server may be offered as a



#### DIRECT COMMUNICATION











### Key Takeaways: What You Really Need to Know.

- By separating the data layer from the communications layer, IM and RU systems can be kept simple
- By supporting 3 architectures, SFERA has solutions for most IM-s and RU-s in Europe.
- 2 architectures are already in use







. \_ \_ \_

•

## PROOF OF CONCEPT On Thalys runs



Theo Vis - NS

**Chloé Lima-Vanzeler** – SNCF Mobilités

IRS 90940 (Project SFERA) Stakeholder Workshop, Paris 05/11/2018

#### Who we are



• Theo Vis **Requirements engineer** NS



 Chloé Lima-Vanzeler **SNCF** Mobilités

Program manager in traction energy efficiency



#### The goals of the POC

Check the consistency of SFERA standard message

Check that DAS can operate with SFERA data



### PROOF OF CONCEPT

#### DATA PREPARATION



![](_page_47_Picture_3.jpeg)

![](_page_47_Picture_4.jpeg)

### PROOF OF CONCEPT

![](_page_48_Figure_1.jpeg)

|                                                     | • FR   | I BE | NL |
|-----------------------------------------------------|--------|------|----|
| Check data availability for every country           | ~      | ~    | ~  |
| Translate<br>FR / BE / NL data > SFERA              | ~      | ~    | ~  |
| Bring the 3 countries' data together                | a<br>✓ | ~    | ~  |
| Integrate the data into<br>Opti-conduite DAS (SNCF) | ~      |      |    |
| Integrate the data into<br>TimTim DAS (NS)          |        |      | ~  |

![](_page_48_Picture_3.jpeg)

![](_page_48_Picture_4.jpeg)

![](_page_48_Picture_5.jpeg)

### PROOF OF CONCEPT

#### DATA PREPARATION

![](_page_49_Picture_2.jpeg)

![](_page_49_Picture_3.jpeg)

#### **10 experts**

![](_page_49_Picture_5.jpeg)

## TEST LIVE IN PASSENGER COACH

#### TEST LIVE IN DRIVER COACH

#### Paris ← → Amsterdam

![](_page_49_Picture_9.jpeg)

**10 devices** 

#### **2 DAS**

![](_page_49_Picture_12.jpeg)

Coming soon

#### THE POSTER

![](_page_50_Figure_1.jpeg)

![](_page_50_Picture_2.jpeg)

### Key Takeaways: What You Really Need to Know

- A POC is being handled on an international Thalys trip with french and dutch existing DAS, integrating data from France + Belgium + Netherlands
- What has been done so far :
  - Data collection > translation into SFERA standard > integration in DAS
  - Run Paris → Amsterdam and back in passenger coach
  - ➔ First results are ok : DAS operated well over the complete journey
- To be done :
  - Logs analysis
  - Run in driver cabin

![](_page_51_Picture_9.jpeg)

## Thank you for your kind attention

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)